Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA.
J Neurosci. 2010 Feb 3;30(5):1712-20. doi: 10.1523/JNEUROSCI.4402-09.2010.
Moderate release of the major stress hormones, glucocorticoids (GCs), improves hippocampal function and memory. In contrast, excessive or prolonged elevations produce impairments. Enzymatic degradation and reformation of GCs help to maintain optimal levels within target tissues, including the brain. We hypothesized that expressing a GC-degrading enzyme in hippocampal neurons would attenuate the negative impact of an excessive elevation in GC levels on synaptic physiology and spatial memory. We tested this by expressing 11-beta-hydroxysteroid dehydrogenase (type II) in dentate gyrus granule cells during a 3 d GC treatment followed by examination of synaptic responses in hippocampal slices or spatial performance in the Morris water maze. In adrenalectomized rats with basal GC replacement, additional GC treatments for 3 d reduced synaptic strength and promoted the expression of long-term depression at medial perforant path synapses, increased granule cell and CA1 pyramidal cell excitability, and impaired spatial reference memory (without influencing learning). Expression of 11-beta-hydroxysteroid dehydrogenase (type II), mostly in mature dentate gyrus granule cells, reversed the effects of high GC levels on granule cell and pyramidal cell excitability, perforant path synaptic plasticity, and spatial memory. These data demonstrate the ability of neuroprotective gene expression limited to a specific cell population to both locally and trans-synaptically offset neurophysiological disruptions produced by prolonged increases in circulating stress hormones. This report supplies the first physiological explanation for previously demonstrated cognitive sparing by anti-stress gene therapy approaches and lends additional insight into the hippocampal processes that are important for memory.
主要应激激素糖皮质激素(GCs)的适度释放可改善海马功能和记忆。相比之下,过度或长期升高会导致损伤。GC 的酶促降解和再形成有助于维持靶组织(包括大脑)中的最佳水平。我们假设在海马神经元中表达 GC 降解酶会减轻 GC 水平过度升高对突触生理学和空间记忆的负面影响。我们通过在 3 天 GC 处理期间在齿状回颗粒细胞中表达 11-β-羟类固醇脱氢酶(II 型),然后在海马切片中检查突触反应或在 Morris 水迷宫中检查空间性能来测试这一点。在接受基础 GC 替代的肾上腺切除术大鼠中,另外 3 天的 GC 处理会降低突触强度,并促进内侧穿通路径突触的长时程抑郁表达,增加颗粒细胞和 CA1 锥体神经元的兴奋性,并损害空间参考记忆(而不影响学习)。11-β-羟类固醇脱氢酶(II 型)的表达(主要在成熟的齿状回颗粒细胞中)逆转了高 GC 水平对颗粒细胞和锥体细胞兴奋性、穿通路径突触可塑性以及空间记忆的影响。这些数据表明,仅限于特定细胞群体的神经保护基因表达的能力可以局部和跨突触抵消循环应激激素长期增加所产生的神经生理紊乱。本报告首次为先前证明的抗应激基因治疗方法提供了认知保留的生理解释,并进一步深入了解了对记忆很重要的海马过程。