Suppr超能文献

动态心电图监测中短暂ST段事件的检测。

Detection of transient ST segment episodes during ambulatory ECG monitoring.

作者信息

Jager F, Moody G B, Mark R G

机构信息

Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, 1001, Slovenia.

出版信息

Comput Biomed Res. 1998 Oct;31(5):305-22. doi: 10.1006/cbmr.1998.1483.

Abstract

Using the European Society of Cardiology ST-T Database, we have developed a Karhunen-Loève transform-based algorithm for robust automated detection of transient ST segment episodes during ambulatory ECG monitoring. We review current approaches and systems to detect transient ST segment changes and describe the architecture of our algorithm and its development. The algorithm incorporates a single-scan trajectory-recognition technique in feature space using the Mahalanobis distance function between the feature vectors. The main characteristics of the algorithm are detection of noisy beats, correction of the reference ST segment level to correct for slow ST level drift, detection of sudden significant shifts of ST deviation due to shifts of the mean electrical axis of the heart, detection of transient ST episodes, and, by tracking the QRS complex morphology, differentiation between ischemic and nonischemic ST episodes as a result of axis shifts. We compared the algorithm's performance to other recently developed algorithms and estimated its real-world performance.

摘要

利用欧洲心脏病学会ST-T数据库,我们开发了一种基于卡尔胡宁-洛伊夫变换的算法,用于在动态心电图监测期间对短暂ST段事件进行稳健的自动检测。我们回顾了当前检测短暂ST段变化的方法和系统,并描述了我们算法的架构及其开发过程。该算法在特征空间中采用单扫描轨迹识别技术,利用特征向量之间的马氏距离函数。该算法的主要特点包括检测有噪声的搏动、校正参考ST段水平以纠正ST水平的缓慢漂移、检测由于心脏平均电轴移位导致的ST偏差突然显著变化、检测短暂ST段事件,以及通过跟踪QRS复合波形态,区分由于电轴移位导致的缺血性和非缺血性ST段事件。我们将该算法的性能与其他最近开发的算法进行了比较,并评估了其在实际应用中的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验