Suppr超能文献

用于生理监测化学机械传感器的自由溶胀和受限智能水凝胶。

Free swelling and confined smart hydrogels for applications in chemomechanical sensors for physiological monitoring.

作者信息

Lin G, Chang S, Kuo C-H, Magda J, Solzbacher F

机构信息

Department of Materials Science & Engineering, University of Utah, Salt Lake City, Utah 84112, USA.

出版信息

Sens Actuators B Chem. 2009 Feb 2;136(1):186. doi: 10.1016/j.snb.2008.11.001.

Abstract

We investigate thin films of "smart" polymer hydrogels used to convert miniature pressure sensors into novel chemomechanical sensors. In this versatile sensing approach, a smart hydrogel is confined between a porous membrane and the diaphragm of a piezoresistive pressure transducer. An increase in the environmental analyte concentration, as sensed through the pores of the membrane, is detected by measuring the change in pressure exerted by the hydrogel on the pressure transducer diaphragm. We compare the response of such a sensor with the response of a free-swelling hydrogel identical to the one used within the sensor. The sensor and the free hydrogel are observed to have comparable mean response times. However, the time-dependent response curve of the sensor, unlike that of the free hydrogel, is highly asymmetric between swelling and deswelling, with a smaller time constant for deswelling. We also investigate novel methods for increasing sensor sensitivity, such as use of a two-layer membrane with a nanoporous polymer inner layer, and pre-loading of the hydrogel under pressure. In ionic strength response tests, use of an inner membrane increases sensor sensitivity without increasing mean response time, an effect that varies with membrane water fraction.

摘要

我们研究了用于将微型压力传感器转变为新型化学机械传感器的“智能”聚合物水凝胶薄膜。在这种通用的传感方法中,一种智能水凝胶被限制在多孔膜和压阻式压力传感器的隔膜之间。通过测量水凝胶施加在压力传感器隔膜上的压力变化,可检测出通过膜孔感知到的环境分析物浓度的增加。我们将这种传感器的响应与一种与传感器内部使用的相同的自由溶胀水凝胶的响应进行了比较。观察到传感器和自由水凝胶具有可比的平均响应时间。然而,与自由水凝胶不同,传感器的时间依赖性响应曲线在溶胀和消溶胀之间高度不对称,消溶胀的时间常数较小。我们还研究了提高传感器灵敏度的新方法,例如使用具有纳米多孔聚合物内层的双层膜,以及在压力下对水凝胶进行预加载。在离子强度响应测试中,使用内膜可提高传感器灵敏度而不增加平均响应时间,这种效果会随膜的水含量而变化。

相似文献

1
2
Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro).
Sens Actuators B Chem. 2010 Mar 19;145(2):807-816. doi: 10.1016/j.snb.2010.01.063.
4
In-vitro investigations of a pH- and ionic-strength-responsive polyelectrolytic hydrogel using a piezoresistive microsensor.
Smart Struct Mater Nondestruct Eval Health Monit Diagn. 2009 Apr 6;7287. doi: 10.1117/12.816478.
5
Piezoresistive Hydrogel-Based Sensors for the Detection of Ammonia.
Sensors (Basel). 2019 Feb 25;19(4):971. doi: 10.3390/s19040971.
6
Constant-volume hydrogel osmometer: a new device concept for miniature biosensors.
Biomacromolecules. 2002 Nov-Dec;3(6):1271-5. doi: 10.1021/bm0255894.
7
Smart Hydrogel Swelling State Detection Based on a Power-Transfer Transduction Principle.
ACS Appl Polym Mater. 2024 Apr 23;6(9):5544-5554. doi: 10.1021/acsapm.4c00808. eCollection 2024 May 10.
9
10
Effect of temperature changes on the performance of ionic strength biosensors based on hydrogels and pressure sensors.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1855-8. doi: 10.1109/IEMBS.2011.6090527.

引用本文的文献

1
Physics-Based Circuit Modeling of the Impedance Characteristics of a Smart Hydrogel-Actuated Bending Sensor.
Sens Actuators A Phys. 2022 Nov 1;347. doi: 10.1016/j.sna.2022.113954. Epub 2022 Oct 21.
2
Smart Hydrogel Swelling State Detection Based on a Power-Transfer Transduction Principle.
ACS Appl Polym Mater. 2024 Apr 23;6(9):5544-5554. doi: 10.1021/acsapm.4c00808. eCollection 2024 May 10.
3
Advances in Sensing Technologies for Monitoring of Bone Health.
Biosensors (Basel). 2020 Apr 21;10(4):42. doi: 10.3390/bios10040042.
4
Hydrogel Based Sensors for Biomedical Applications: An Updated Review.
Polymers (Basel). 2017 Aug 16;9(8):364. doi: 10.3390/polym9080364.
5
Piezoresistive Hydrogel-Based Sensors for the Detection of Ammonia.
Sensors (Basel). 2019 Feb 25;19(4):971. doi: 10.3390/s19040971.
6
Stimuli sensitive polymers and self regulated drug delivery systems: a very partial review.
J Control Release. 2014 Sep 28;190:337-51. doi: 10.1016/j.jconrel.2014.06.035. Epub 2014 Jun 28.
7
Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro).
Sens Actuators B Chem. 2010 Mar 19;145(2):807-816. doi: 10.1016/j.snb.2010.01.063.
8
Responsive hydrogels for label-free signal transduction within biosensors.
Sensors (Basel). 2010;10(5):4381-409. doi: 10.3390/s100504381. Epub 2010 Apr 30.
10
In-vitro investigations of a pH- and ionic-strength-responsive polyelectrolytic hydrogel using a piezoresistive microsensor.
Smart Struct Mater Nondestruct Eval Health Monit Diagn. 2009 Apr 6;7287. doi: 10.1117/12.816478.

本文引用的文献

1
Review on Hydrogel-based pH Sensors and Microsensors.
Sensors (Basel). 2008 Jan 25;8(1):561-581. doi: 10.3390/s8010561.
2
A hydrogel-based implantable micromachined transponder for wireless glucose measurement.
Diabetes Technol Ther. 2006 Feb;8(1):112-22. doi: 10.1089/dia.2006.8.112.
4
Constant-volume hydrogel osmometer: a new device concept for miniature biosensors.
Biomacromolecules. 2002 Nov-Dec;3(6):1271-5. doi: 10.1021/bm0255894.
5
Osmotic swelling of polyacrylate hydrogels in physiological salt solutions.
Biomacromolecules. 2000 Spring;1(1):84-90. doi: 10.1021/bm9905031.
6
Functional hydrogel structures for autonomous flow control inside microfluidic channels.
Nature. 2000 Apr 6;404(6778):588-90. doi: 10.1038/35007047.
7
'Smart' polymers and what they could do in biotechnology and medicine.
Trends Biotechnol. 1999 Aug;17(8):335-40. doi: 10.1016/s0167-7799(99)01345-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验