Suppr超能文献

锌和镁掺杂的羟基磷灰石纳米颗粒用于蛋白质的控制释放。

Zn- and Mg-doped hydroxyapatite nanoparticles for controlled release of protein.

机构信息

W M Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, USA.

出版信息

Langmuir. 2010 Apr 6;26(7):4958-64. doi: 10.1021/la903617e.

Abstract

Bovine serum albumin (BSA) protein incorporated with hydroxyapatite (HA) nanoparticles (NPs) were synthesized by an in situ precipitation process. 2 mol % Zn(2+) and Mg(2+) were used as dopants to synthesize Zn(2+)/Mg(2+)-doped HA-BSA NPs. In our study we used BSA as a model protein. The amount of BSA uptake by doped and undoped HA NPs and subsequent release of BSA from NPs were investigated. Zn-doped HA NPs showed the highest amount of BSA uptake, whereas the amount of BSA loaded in undoped HA NPs was the lowest. A two-stage BSA release profile from doped and undoped HA NPs was observed in phosphate buffer solution (PBS) at pH 7.2 +/- 0.2. The initial burst release was due to the desorption of BSA from the HA surface. The later stage of slow release was controlled by the dissolution of BSA incorporated HA NPs. The BSA release rate from Zn-doped HA NPs was found to be the highest, whereas undoped HA NPs released BSA at the slowest rate. Our study showed that the protein release rate from HA NPs can be controlled by the addition of suitable dopants, and doped HA-based NP systems can be used in bone growth factor and drug release study.

摘要

牛血清白蛋白(BSA)与羟基磷灰石(HA)纳米粒子(NPs)结合的蛋白质通过原位沉淀法合成。使用 2 mol%的 Zn(2+)和 Mg(2+)作为掺杂剂来合成 Zn(2+)/Mg(2+)-掺杂 HA-BSA NPs。在我们的研究中,我们使用 BSA 作为模型蛋白。研究了掺杂和未掺杂 HA NPs 对 BSA 的摄取量以及随后从 NPs 中释放 BSA 的情况。Zn 掺杂的 HA NPs 显示出最高的 BSA 摄取量,而未掺杂 HA NPs 中负载的 BSA 量最低。在 pH 7.2±0.2 的磷酸盐缓冲溶液(PBS)中观察到掺杂和未掺杂 HA NPs 的 BSA 释放呈现两阶段释放曲线。初始突释是由于 BSA 从 HA 表面解吸。随后的缓慢释放阶段由掺入 HA NPs 的 BSA 的溶解控制。发现 Zn 掺杂的 HA NPs 中 BSA 的释放速率最高,而未掺杂的 HA NPs 则以最慢的速率释放 BSA。我们的研究表明,通过添加合适的掺杂剂可以控制 HA NPs 中蛋白质的释放速率,并且基于掺杂 HA 的 NP 系统可用于骨生长因子和药物释放研究。

相似文献

1
Zn- and Mg-doped hydroxyapatite nanoparticles for controlled release of protein.
Langmuir. 2010 Apr 6;26(7):4958-64. doi: 10.1021/la903617e.
2
On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery.
J Control Release. 2005 Sep 20;107(1):112-21. doi: 10.1016/j.jconrel.2005.05.025.
3
Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications.
Colloids Surf B Biointerfaces. 2019 Oct 1;182:110346. doi: 10.1016/j.colsurfb.2019.110346. Epub 2019 Jul 4.
4
Hollow hydroxyapatite microspheres as a device for controlled delivery of proteins.
J Mater Sci Mater Med. 2011 Mar;22(3):579-91. doi: 10.1007/s10856-011-4250-6. Epub 2011 Feb 3.
5
Hyaluronic-Coated Albumin Nanoparticles for the Non-Invasive Delivery of Apatinib in Diabetic Retinopathy.
Int J Nanomedicine. 2021 Jul 2;16:4481-4494. doi: 10.2147/IJN.S316564. eCollection 2021.
7
Investigations on the complexation and binding mechanism of bovine serum albumin with Ag-doped TiO nanoparticles.
Phys Chem Chem Phys. 2024 Oct 23;26(41):26453-26464. doi: 10.1039/d4cp02056a.
9
Functionalizing the surface of hydroxyapatite drug carrier with carboxylic acid groups to modulate the loading and release of curcumin nanoparticles.
Mater Sci Eng C Mater Biol Appl. 2019 Jun;99:929-939. doi: 10.1016/j.msec.2019.02.030. Epub 2019 Feb 11.
10

引用本文的文献

1
New Nanobioceramics Based on Hydroxyapatite for Biomedical Applications: Stability and Properties.
Nanomaterials (Basel). 2025 Jan 30;15(3):224. doi: 10.3390/nano15030224.
2
Optimization of a tunable process for rapid production of calcium phosphate microparticles using a droplet-based microfluidic platform.
Front Bioeng Biotechnol. 2024 Mar 27;12:1352184. doi: 10.3389/fbioe.2024.1352184. eCollection 2024.
3
Remineralization Induced by Biomimetic Hydroxyapatite Toothpastes on Human Enamel.
Biomimetics (Basel). 2023 Sep 23;8(6):450. doi: 10.3390/biomimetics8060450.
9
Angio-osteogenic capacity of octacalcium phosphate co-precipitated with copper gluconate in rat calvaria critical-sized defect.
Sci Technol Adv Mater. 2022 Feb 14;23(1):120-139. doi: 10.1080/14686996.2022.2035193. eCollection 2022.
10
Nature-Derived and Synthetic Additives to poly(ɛ-Caprolactone) Nanofibrous Systems for Biomedicine; an Updated Overview.
Front Chem. 2022 Jan 19;9:809676. doi: 10.3389/fchem.2021.809676. eCollection 2021.

本文引用的文献

1
Reverse micelle-mediated synthesis of calcium phosphate nanocarriers for controlled release of bovine serum albumin.
Acta Biomater. 2009 Oct;5(8):3112-21. doi: 10.1016/j.actbio.2009.04.031. Epub 2009 May 4.
2
Mesoporous calcium silicate for controlled release of bovine serum albumin protein.
Acta Biomater. 2009 Jun;5(5):1686-96. doi: 10.1016/j.actbio.2009.01.012. Epub 2009 Jan 22.
3
Biocompatibility evaluation of hydroxyapatite/collagen nanocomposites doped with Zn+2.
Biomed Mater. 2007 Jun;2(2):135-41. doi: 10.1088/1748-6041/2/2/012. Epub 2007 May 3.
4
Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants.
J Mater Sci Mater Med. 2008 Jul;19(7):2669-77. doi: 10.1007/s10856-008-3395-4. Epub 2008 Feb 13.
5
Adsorption-induced conformational changes of proteins onto ceramic particles: differential scanning calorimetry and FTIR analysis.
J Colloid Interface Sci. 2006 Jul 1;299(1):56-69. doi: 10.1016/j.jcis.2006.01.065. Epub 2006 Feb 28.
6
On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery.
J Control Release. 2005 Sep 20;107(1):112-21. doi: 10.1016/j.jconrel.2005.05.025.
8
Hydroxyapatite particles as a controlled release carrier of protein.
Biomaterials. 2004 Aug;25(17):3807-12. doi: 10.1016/j.biomaterials.2003.10.081.
9
Osteoblast response to hydroxyapatite doped with divalent and trivalent cations.
Biomaterials. 2004 May;25(11):2111-21. doi: 10.1016/j.biomaterials.2003.09.001.
10
Synthesis and characterization of needlelike apatitic nanocomposite with controlled aspect ratios.
Biomaterials. 2003 Oct;24(22):3981-8. doi: 10.1016/s0142-9612(03)00303-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验