Suppr超能文献

地理信息系统和应用空间统计学是研究汉森病(麻风病)和确定疾病高风险地区的有效工具。

Geographic information systems and applied spatial statistics are efficient tools to study Hansen's disease (leprosy) and to determine areas of greater risk of disease.

机构信息

Health Post-Graduate Program, Department of Internal Medicine, Health Science Center; Department of Biochemistry, Bioscience Center, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.

出版信息

Am J Trop Med Hyg. 2010 Feb;82(2):306-14. doi: 10.4269/ajtmh.2010.08-0675.

Abstract

Applied Spatial Statistics used in conjunction with geographic information systems (GIS) provide an efficient tool for the surveillance of diseases. Here, using these tools we analyzed the spatial distribution of Hansen's disease in an endemic area in Brazil. A sample of 808 selected from a universe of 1,293 cases was geocoded in Mossoró, Rio Grande do Norte, Brazil. Hansen's disease cases were not distributed randomly within the neighborhoods, with higher detection rates found in more populated districts. Cluster analysis identified two areas of high risk, one with a relative risk of 5.9 (P = 0.001) and the other 6.5 (P = 0.001). A significant relationship between the geographic distribution of disease and the social economic variables indicative of poverty was observed. Our study shows that the combination of GIS and spatial analysis can identify clustering of transmissible disease, such as Hansen's disease, pointing to areas where intervention efforts can be targeted to control disease.

摘要

应用空间统计学与地理信息系统(GIS)相结合,为疾病监测提供了一种有效的工具。在这里,我们使用这些工具分析了巴西一个流行地区的麻风病的空间分布。从巴西北里奥格兰德州莫索罗的 1293 例病例中选取了 808 个样本进行地理编码。麻风病病例在社区内的分布并非随机,人口较多的地区检出率较高。聚类分析确定了两个高风险区域,一个的相对风险为 5.9(P=0.001),另一个为 6.5(P=0.001)。观察到疾病的地理分布与表明贫困的社会经济变量之间存在显著关系。我们的研究表明,GIS 和空间分析的结合可以识别传染病(如麻风病)的聚集性,从而确定可以针对干预措施的控制疾病的目标区域。

相似文献

10
Consensus in Brazil on the renaming of leprosy to Hansen's disease.巴西就将麻风病更名为汉森病达成共识。
Trans R Soc Trop Med Hyg. 2021 Sep 3;115(9):1086-1087. doi: 10.1093/trstmh/trab115.

引用本文的文献

2
Identifying clusters of leprosy patients in India: A comparison of methods.识别印度的麻风病患者群集:方法比较。
PLoS Negl Trop Dis. 2022 Dec 16;16(12):e0010972. doi: 10.1371/journal.pntd.0010972. eCollection 2022 Dec.
9
Spatial clustering and local risk of leprosy in São Paulo, Brazil.巴西圣保罗麻风病的空间聚集性与局部风险
PLoS Negl Trop Dis. 2017 Feb 27;11(2):e0005381. doi: 10.1371/journal.pntd.0005381. eCollection 2017 Feb.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验