Suppr超能文献

鸟类公共栖息地成为美国东北部城市地区西尼罗河病毒的放大焦点。

Avian communal roosts as amplification foci for West Nile virus in urban areas in northeastern United States.

机构信息

Division of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520-8034, USA.

出版信息

Am J Trop Med Hyg. 2010 Feb;82(2):337-43. doi: 10.4269/ajtmh.2010.09-0506.

Abstract

West Nile virus (WNV) perpetuates in an enzootic transmission cycle involving Culex mosquitoes and virus-competent avian hosts. In the northeastern United States, the enzootic vectors, Cx. pipiens and Cx. restuans, feed preferentially on American robins (Turdus migratorius), suggesting a key role for this bird species in the WNV transmission cycle. We examined the role of American robin communal roosts as virus amplification foci in greater New Haven, Connecticut. Robin communal roosts were located by radio tracking. After mid-August, when most robins were using the roosts, Cx. pipiens and Cx. restuans fed often on robins and were significantly more infected with WNV at communal roosts than at non-roosting sites. We also identified 6.4% human-derived blood meals in Aedes vexans in communal roosts. Our results indicate that communal roosts act as late-season amplification foci facilitating transmission to humans because of high infection rates, high abundance, and feeding patterns of enzootic and bridge vectors.

摘要

西尼罗河病毒(WNV)在涉及库蚊属蚊子和具有病毒感染能力的禽类宿主的地方性传播循环中持续存在。在美国东北部,地方性传播媒介库蚊属和致倦库蚊属优先以美洲知更鸟(Turdus migratorius)为食,这表明这种鸟类在 WNV 传播循环中发挥了关键作用。我们研究了在康涅狄格州纽黑文地区,美洲知更鸟的公共栖息地作为病毒扩增焦点的作用。通过无线电追踪来定位知更鸟的公共栖息地。8 月中旬以后,当大多数知更鸟开始使用栖息地时,库蚊属和致倦库蚊属经常以知更鸟为食,并且在公共栖息地的感染率显著高于非栖息地。我们还在公共栖息地的 Aedes vexans 中发现了 6.4%的人血。我们的研究结果表明,公共栖息地作为晚期的扩增焦点,由于高感染率、丰富度和地方性及桥梁媒介的取食模式,促进了向人类的传播。

相似文献

1
Avian communal roosts as amplification foci for West Nile virus in urban areas in northeastern United States.
Am J Trop Med Hyg. 2010 Feb;82(2):337-43. doi: 10.4269/ajtmh.2010.09-0506.
2
Implications of spatial patterns of roosting and movements of American robins for West Nile virus transmission.
Vector Borne Zoonotic Dis. 2012 Oct;12(10):877-85. doi: 10.1089/vbz.2011.0902. Epub 2012 May 31.
3
Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999-2003.
Vector Borne Zoonotic Dis. 2004 Winter;4(4):360-78. doi: 10.1089/vbz.2004.4.360.
6
Avian roosting behavior influences vector-host interactions for West Nile virus hosts.
Parasit Vectors. 2014 Aug 28;7:399. doi: 10.1186/1756-3305-7-399.
7
Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States.
Emerg Infect Dis. 2006 Mar;12(3):468-74. doi: 10.3201/eid1203.051004.
8
Diverse host feeding on nesting birds may limit early-season West Nile virus amplification.
Vector Borne Zoonotic Dis. 2014 Jun;14(6):447-53. doi: 10.1089/vbz.2013.1536. Epub 2014 Apr 18.
9
The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America.
J Am Mosq Control Assoc. 2012 Dec;28(4 Suppl):137-51. doi: 10.2987/8756-971X-28.4s.137.
10
West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior.
PLoS Biol. 2006 Apr;4(4):e82. doi: 10.1371/journal.pbio.0040082. Epub 2006 Feb 28.

引用本文的文献

1
Assessing the Influence of Climate on the Spatial Pattern of West Nile Virus Incidence in the United States.
Environ Health Perspect. 2023 Apr;131(4):47016. doi: 10.1289/EHP10986. Epub 2023 Apr 27.
2
Mixed-species assemblages and disease: the importance of differential vector and parasite attraction in transmission dynamics.
Philos Trans R Soc Lond B Biol Sci. 2023 Jun 5;378(1878):20220109. doi: 10.1098/rstb.2022.0109. Epub 2023 Apr 17.
3
Reservoir hosts experiencing food stress alter transmission dynamics for a zoonotic pathogen.
Proc Biol Sci. 2021 Aug 11;288(1956):20210881. doi: 10.1098/rspb.2021.0881.
4
Spatial dynamics of pathogen transmission in communally roosting species: Impacts of changing habitats on bat-virus dynamics.
J Anim Ecol. 2021 Nov;90(11):2609-2622. doi: 10.1111/1365-2656.13566. Epub 2021 Aug 4.
6
Feeding Success and Host Selection by Say Mosquitoes in Experimental Trials.
Vector Borne Zoonotic Dis. 2019 Jul;19(7):540-548. doi: 10.1089/vbz.2018.2381. Epub 2019 Apr 9.
9
Avian phenotypic traits related to feeding preferences in two Culex mosquitoes.
Naturwissenschaften. 2017 Aug 30;104(9-10):76. doi: 10.1007/s00114-017-1497-x.
10
Large-Scale Removal of Invasive Honeysuckle Decreases Mosquito and Avian Host Abundance.
Ecohealth. 2017 Dec;14(4):750-761. doi: 10.1007/s10393-017-1265-6. Epub 2017 Aug 4.

本文引用的文献

1
DIFFERENTIAL IMPACT OF WEST NILE VIRUS ON CALIFORNIA BIRDS.
Condor. 2009;111(1):1-20. doi: 10.1525/cond.2009.080013.
5
Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans.
J Med Entomol. 2008 Jan;45(1):125-8. doi: 10.1603/0022-2585(2008)45[125:cpdcab]2.0.co;2.
6
Comparison of light traps, gravid traps, and resting boxes for West Nile virus surveillance.
J Vector Ecol. 2007 Dec;32(2):285-91. doi: 10.3376/1081-1710(2007)32[285:coltgt]2.0.co;2.
7
Host-feeding patterns of Culex mosquitoes in relation to trap habitat.
Emerg Infect Dis. 2007 Dec;13(12):1921-3. doi: 10.3201/eid1312.070275.
10
Amplification due to spatial clustering in an individual-based model of mosquito-avian arbovirus transmission.
Trans R Soc Trop Med Hyg. 2007 May;101(5):469-83. doi: 10.1016/j.trstmh.2006.11.007. Epub 2007 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验