Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
Phys Med Biol. 2011 Aug 21;56(16):5303-17. doi: 10.1088/0031-9155/56/16/015. Epub 2011 Jul 28.
Prediction of respiratory motion is essential for real-time tracking of lung or liver tumours in radiotherapy to compensate for system latencies. This study compares the performance of respiratory motion prediction based on linear regression (LR), neural networks (NN), kernel density estimation (KDE) and support vector regression (SVR) for various sampling rates and system latencies ranging from 0.2 to 0.6 s. Root-mean-squared prediction errors are evaluated on 12 3D lung tumour motion traces acquired at 30 Hz during radiotherapy treatments. The effect of stationary predictor training versus continuous predictor retraining as well as full 3D motion processing versus independent coordinate-wise motion processing is investigated. Model parameter optimization is performed through a grid search in the model parameter space for each predictor and all considered latencies, sampling rates, training schemes and 3D data-processing modes. Comparison of the predictors is performed in the clinically applicable setting of patient-independent model parameters. The considered predictors roughly halve the prediction errors compared to using no prediction. When averaging over all sampling rates and latencies, prediction errors normalized to errors of using no prediction of 0.44, 0.46, 0.49 and 0.55 for NN, SVR, LR and KDE are observed. The small differences between the predictors emphasize the relative importance of adequate model parameter optimization compared to the actual prediction model selection. Thorough model parameter tuning is therefore essential for fair predictor comparisons.
预测呼吸运动对于放射治疗中实时跟踪肺部或肝脏肿瘤以补偿系统延迟至关重要。本研究比较了基于线性回归(LR)、神经网络(NN)、核密度估计(KDE)和支持向量回归(SVR)的呼吸运动预测在不同采样率和系统延迟(0.2 至 0.6 秒)下的性能。在放射治疗过程中以 30 Hz 采集的 12 个 3D 肺部肿瘤运动轨迹上评估了均方根预测误差。研究了固定预测器训练与连续预测器重新训练以及全 3D 运动处理与独立坐标运动处理的效果。通过对每个预测器和所有考虑的延迟、采样率、训练方案和 3D 数据处理模式的模型参数空间进行网格搜索,对模型参数进行了优化。在独立于患者的模型参数的临床适用设置中比较了预测器。与不使用预测相比,所考虑的预测器大致将预测误差减半。当平均所有采样率和延迟时,NN、SVR、LR 和 KDE 的归一化预测误差分别为使用无预测的 0.44、0.46、0.49 和 0.55。预测器之间的微小差异强调了适当的模型参数优化相对于实际预测模型选择的相对重要性。因此,彻底的模型参数调整对于公平的预测器比较至关重要。