University of California, Los Angeles, CA 90095, USA.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010 May-Jun;2(3):305-15. doi: 10.1002/wnan.81.
The ability to specifically silence genes using RNA interference (RNAi) has wide therapeutic applications for the treatment of disease or the augmentation of tissue formation. RNAi is the sequence-specific gene silencing mediated by a 21-25 nucleotide double-stranded small interfering RNA (siRNA) molecule. siRNAs are incorporated into the RNA-induced silencing complex (RISC), which mediates mRNA sequence-specific binding and cleavage. Although RNAi has the potential to be a powerful therapeutic drug, its delivery remains a major limitation. The generation of nanosized particles is being investigated to enhance the delivery of siRNA-based drugs. These nanoparticles are generally designed to overcome one or more of the barriers encountered by the siRNA when trafficked to the cytosol. In this review, we will discuss recent advances in the design of delivery strategies for siRNA, focusing our attention to those strategies that have had in vivo success or have introduced novel functionality that allowed enhanced intracellular trafficking and/or cellular targeting. First, we will discuss the different barriers that must be overcome for efficient siRNA delivery. Second, we will discuss the approaches for siRNA delivery by size including direct modification of siRNAs (less than 10 nm), self-assembled particles based on cationic polymers and cationic lipids (100-300 nm), neutral liposomes (<200 nm), and macroscale matrices that contain naked siRNA or siRNA loaded nanoparticles (>100 microm). Finally, we will briefly discuss recent in vivo therapeutic success.
利用 RNA 干扰 (RNAi) 特异性沉默基因具有广泛的治疗疾病或增强组织形成的应用潜力。RNAi 是由 21-25 个核苷酸双链小干扰 RNA (siRNA) 分子介导的序列特异性基因沉默。siRNA 被整合到 RNA 诱导的沉默复合物 (RISC) 中,后者介导 mRNA 序列特异性结合和切割。尽管 RNAi 具有成为强大治疗药物的潜力,但它的传递仍然是一个主要限制。正在研究纳米级颗粒的生成以增强基于 siRNA 的药物的传递。这些纳米颗粒通常旨在克服 siRNA 在运输到细胞质时遇到的一个或多个障碍。在这篇综述中,我们将讨论用于 siRNA 传递的设计策略的最新进展,重点关注那些在体内取得成功或引入了新功能的策略,这些功能允许增强细胞内运输和/或细胞靶向。首先,我们将讨论有效 siRNA 传递必须克服的不同障碍。其次,我们将讨论通过大小进行 siRNA 传递的方法,包括 siRNA 的直接修饰(小于 10nm)、基于阳离子聚合物和阳离子脂质的自组装颗粒(100-300nm)、中性脂质体(小于 200nm)以及包含裸露 siRNA 或负载 siRNA 的纳米颗粒的宏观基质(大于 100μm)。最后,我们将简要讨论最近的体内治疗成功案例。