Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
Biochemistry. 2010 Mar 16;49(10):2246-55. doi: 10.1021/bi902066t.
The metal-dependent deacetylase UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC) catalyzes the first committed step in lipid A biosynthesis, the hydrolysis of UDP-3-O-myristoyl-N-acetylglucosamine to form UDP-3-O-myristoylglucosamine and acetate. Consequently, LpxC is a target for the development of antibiotics, nearly all of which coordinate the active site metal ion. Here we examine the ability of Fe(2+) to serve as a cofactor for wild-type Escherichia coli LpxC and a mutant enzyme (EcC63A), in which one of the ligands for the inhibitory metal binding site has been removed. LpxC exhibits higher activity (6-8-fold) with a single bound Fe(2+) as the cofactor compared to Zn(2+)-LpxC; both metalloenzymes have a bell-shaped dependence on pH with similar pK(a) values, indicating that at least two ionizations are important for maximal activity. X-ray absorption spectroscopy experiments suggest that the catalytic metal ion bound to Fe(2+)-EcLpxC is five-coordinate, suggesting that catalytic activity may correlate with coordination number. Furthermore, the ligand affinity of Fe(2+)-LpxC compared to the Zn(2+) enzyme is altered by up to 6-fold. In contrast to Zn(2+)-LpxC, the activity of Fe(2+)-LpxC is redox-sensitive, and a time-dependent decrease in activity is observed under aerobic conditions. The LpxC activity of crude E. coli cell lysates is also aerobically sensitive, consistent with the presence of Fe(2+)-LpxC. These data indicate that EcLpxC can use either Fe(2+) or Zn(2+) to activate catalysis in vitro and possibly in vivo, which may allow LpxC to function in E. coli grown under different environmental conditions.
金属依赖性去乙酰化酶 UDP-3-O-[(R)-3-羟十七酰基]-N-乙酰葡萄糖胺去乙酰化酶(LpxC)催化脂 A 生物合成的第一步反应,即 UDP-3-O-肉豆蔻酰基-N-乙酰葡萄糖胺的水解,生成 UDP-3-O-肉豆蔻酰基葡萄糖胺和乙酸。因此,LpxC 是抗生素开发的一个靶点,几乎所有抗生素都与活性部位的金属离子配位。在这里,我们研究了 Fe(2+)作为野生型大肠杆菌 LpxC 和突变酶(EcC63A)的辅助因子的能力,其中一个抑制金属结合位点的配体已被去除。与 Zn(2+)-LpxC 相比,LpxC 表现出更高的活性(6-8 倍),当单一结合的 Fe(2+)作为辅助因子时;两种金属酶对 pH 的依赖性呈钟形,具有相似的 pK(a)值,表明至少有两个离子化对最大活性很重要。X 射线吸收光谱实验表明,与 Fe(2+)-EcLpxC 结合的催化金属离子为五配位,表明催化活性可能与配位数有关。此外,与 Zn(2+)-LpxC 相比,Fe(2+)-LpxC 的配体亲和力改变了 6 倍。与 Zn(2+)-LpxC 不同,Fe(2+)-LpxC 的活性对氧化还原敏感,在有氧条件下观察到活性的时间依赖性下降。粗大肠杆菌细胞裂解物的 LpxC 活性也对有氧敏感,这与 Fe(2+)-LpxC 的存在一致。这些数据表明,EcLpxC 可以在体外和体内使用 Fe(2+)或 Zn(2+)激活催化,这可能允许 LpxC 在不同环境条件下生长的大肠杆菌中发挥作用。