Suppr超能文献

UDP-3-O-((R)-3-羟十四烷酰基)-N-乙酰葡萄糖胺脱乙酰酶(LpxC)活性部位的金属离子根据细胞条件在 Fe(II)和 Zn(II)之间切换。

Active site metal ion in UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) switches between Fe(II) and Zn(II) depending on cellular conditions.

机构信息

Departments of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

J Biol Chem. 2010 Oct 29;285(44):33788-96. doi: 10.1074/jbc.M110.147173. Epub 2010 Aug 13.

Abstract

UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) catalyzes the deacetylation of UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine to form UDP-3-O-myristoylglucosamine and acetate in Gram-negative bacteria. This second, and committed, step in lipid A biosynthesis is a target for antibiotic development. LpxC was previously identified as a mononuclear Zn(II) metalloenzyme; however, LpxC is 6-8-fold more active with the oxygen-sensitive Fe(II) cofactor (Hernick, M., Gattis, S. G., Penner-Hahn, J. E., and Fierke, C. A. (2010) Biochemistry 49, 2246-2255). To analyze the native metal cofactor bound to LpxC, we developed a pulldown method to rapidly purify tagged LpxC under anaerobic conditions. The metal bound to LpxC purified from Escherichia coli grown in minimal medium is mainly Fe(II). However, the ratio of iron/zinc bound to LpxC varies with the metal content of the medium. Furthermore, the iron/zinc ratio bound to native LpxC, determined by activity assays, has a similar dependence on the growth conditions. LpxC has significantly higher affinity for Zn(II) compared with Fe(II) with K(D) values of 60 ± 20 pM and 110 ± 40 nM, respectively. However, in vivo concentrations of readily exchangeable iron are significantly higher than zinc, suggesting that Fe(II) is the thermodynamically favored metal cofactor for LpxC under cellular conditions. These data indicate that LpxC expressed in E. coli grown in standard medium predominantly exists as the Fe(II)-enzyme. However, the metal cofactor in LpxC can switch between iron and zinc in response to perturbations in available metal ions. This alteration may be important for regulating the LpxC activity upon changes in environmental conditions and may be a general mechanism of regulating the activity of metalloenzymes.

摘要

UDP-3-O-((R)-3-羟基十四酰基)-N-乙酰葡萄糖胺脱乙酰酶(LpxC)催化 UDP-3-O-((R)-3-羟基十四酰基)-N-乙酰葡萄糖胺的脱乙酰化反应,形成 UDP-3-O-十四酰基葡萄糖胺和醋酸盐,在革兰氏阴性菌中。脂质 A 生物合成的第二步也是关键步骤,是抗生素开发的靶点。LpxC 先前被鉴定为单核锌(II)金属酶;然而,LpxC 与氧敏感的 Fe(II)辅因子(Hernick,M.,Gattis,S. G.,Penner-Hahn,J. E.,和 Fierke,C. A.(2010)生物化学 49,2246-2255)结合时的活性提高了 6-8 倍。为了分析与 LpxC 结合的天然金属辅因子,我们开发了一种下拉方法,以在厌氧条件下快速纯化标记的 LpxC。从在最低培养基中生长的大肠杆菌中纯化的 LpxC 结合的金属主要是 Fe(II)。然而,与 LpxC 结合的铁/锌的比例随培养基中的金属含量而变化。此外,通过活性测定确定的与天然 LpxC 结合的铁/锌比与生长条件有类似的依赖性。LpxC 对 Zn(II)的亲和力明显高于 Fe(II),K(D) 值分别为 60±20 pM 和 110±40 nM。然而,可交换铁的体内浓度明显高于锌,表明在细胞条件下,Fe(II)是 LpxC 的热力学有利的金属辅因子。这些数据表明,在标准培养基中生长的大肠杆菌中表达的 LpxC 主要以 Fe(II)-酶的形式存在。然而,LpxC 中的金属辅因子可以在可用金属离子发生变化时在铁和锌之间切换。这种改变可能对于调节环境条件变化时的 LpxC 活性很重要,并且可能是调节金属酶活性的一般机制。

相似文献

引用本文的文献

2
Properties and biotechnological applications of microbial deacetylase.微生物去乙酰化酶的特性及其生物技术应用。
Appl Microbiol Biotechnol. 2023 Aug;107(15):4697-4716. doi: 10.1007/s00253-023-12613-1. Epub 2023 Jun 16.
9
The Metal Drives the Chemistry: Dual Functions of Acireductone Dioxygenase.金属驱动化学反应:乙醛酸还原酶双功能
Chem Rev. 2017 Aug 9;117(15):10474-10501. doi: 10.1021/acs.chemrev.7b00117. Epub 2017 Jul 21.
10
Structure, inhibition, and regulation of essential lipid A enzymes.必需脂多糖酶的结构、抑制和调控。
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Nov;1862(11):1424-1438. doi: 10.1016/j.bbalip.2016.11.014. Epub 2016 Dec 9.

本文引用的文献

4
Metalloproteins and metal sensing.金属蛋白与金属传感
Nature. 2009 Aug 13;460(7257):823-30. doi: 10.1038/nature08300.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验