Departments of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
J Biol Chem. 2010 Oct 29;285(44):33788-96. doi: 10.1074/jbc.M110.147173. Epub 2010 Aug 13.
UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) catalyzes the deacetylation of UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine to form UDP-3-O-myristoylglucosamine and acetate in Gram-negative bacteria. This second, and committed, step in lipid A biosynthesis is a target for antibiotic development. LpxC was previously identified as a mononuclear Zn(II) metalloenzyme; however, LpxC is 6-8-fold more active with the oxygen-sensitive Fe(II) cofactor (Hernick, M., Gattis, S. G., Penner-Hahn, J. E., and Fierke, C. A. (2010) Biochemistry 49, 2246-2255). To analyze the native metal cofactor bound to LpxC, we developed a pulldown method to rapidly purify tagged LpxC under anaerobic conditions. The metal bound to LpxC purified from Escherichia coli grown in minimal medium is mainly Fe(II). However, the ratio of iron/zinc bound to LpxC varies with the metal content of the medium. Furthermore, the iron/zinc ratio bound to native LpxC, determined by activity assays, has a similar dependence on the growth conditions. LpxC has significantly higher affinity for Zn(II) compared with Fe(II) with K(D) values of 60 ± 20 pM and 110 ± 40 nM, respectively. However, in vivo concentrations of readily exchangeable iron are significantly higher than zinc, suggesting that Fe(II) is the thermodynamically favored metal cofactor for LpxC under cellular conditions. These data indicate that LpxC expressed in E. coli grown in standard medium predominantly exists as the Fe(II)-enzyme. However, the metal cofactor in LpxC can switch between iron and zinc in response to perturbations in available metal ions. This alteration may be important for regulating the LpxC activity upon changes in environmental conditions and may be a general mechanism of regulating the activity of metalloenzymes.
UDP-3-O-((R)-3-羟基十四酰基)-N-乙酰葡萄糖胺脱乙酰酶(LpxC)催化 UDP-3-O-((R)-3-羟基十四酰基)-N-乙酰葡萄糖胺的脱乙酰化反应,形成 UDP-3-O-十四酰基葡萄糖胺和醋酸盐,在革兰氏阴性菌中。脂质 A 生物合成的第二步也是关键步骤,是抗生素开发的靶点。LpxC 先前被鉴定为单核锌(II)金属酶;然而,LpxC 与氧敏感的 Fe(II)辅因子(Hernick,M.,Gattis,S. G.,Penner-Hahn,J. E.,和 Fierke,C. A.(2010)生物化学 49,2246-2255)结合时的活性提高了 6-8 倍。为了分析与 LpxC 结合的天然金属辅因子,我们开发了一种下拉方法,以在厌氧条件下快速纯化标记的 LpxC。从在最低培养基中生长的大肠杆菌中纯化的 LpxC 结合的金属主要是 Fe(II)。然而,与 LpxC 结合的铁/锌的比例随培养基中的金属含量而变化。此外,通过活性测定确定的与天然 LpxC 结合的铁/锌比与生长条件有类似的依赖性。LpxC 对 Zn(II)的亲和力明显高于 Fe(II),K(D) 值分别为 60±20 pM 和 110±40 nM。然而,可交换铁的体内浓度明显高于锌,表明在细胞条件下,Fe(II)是 LpxC 的热力学有利的金属辅因子。这些数据表明,在标准培养基中生长的大肠杆菌中表达的 LpxC 主要以 Fe(II)-酶的形式存在。然而,LpxC 中的金属辅因子可以在可用金属离子发生变化时在铁和锌之间切换。这种改变可能对于调节环境条件变化时的 LpxC 活性很重要,并且可能是调节金属酶活性的一般机制。