Jackman J E, Raetz C R, Fierke C A
Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
Biochemistry. 1999 Feb 9;38(6):1902-11. doi: 10.1021/bi982339s.
The enzyme UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase (LpxC) catalyzes the committed step in the biosynthesis of lipid A and is therefore a potential antibiotic target. Inhibition of this enzyme by hydroxamate compounds [Onishi, H. R.; Pelak, B. A.; Gerckens, L. S.; Silver, L. L.; Kahan, F. M.; Chen, M. H.; Patchett, A. A.; Stachula, S. S.; Anderson, M. S.; Raetz, C. R. H. (1996) Science 274, 980-982] suggested the presence of a metal ion cofactor. We have investigated the substrate specificity and metal dependence of the deacetylase using spectroscopic and kinetic analyses. Comparison of the steady-state kinetic parameters for the physiological substrate UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc and an alternative substrate, UDP-GlcNAc, demonstrates that the ester-linked R-3-hydroxymyristoyl chain increases kcat/KM (5 x 10(6))-fold. Metal-chelating reagents, such as dipicolinic acid (DPA) and ethylenediaminetetraacetic acid, completely inhibit LpxC activity, implicating an essential metal ion. Plasma emission spectroscopy and colorimetric assays directly demonstrate that purified LpxC contains bound Zn2+. This Zn2+ can be removed by incubation with DPA, causing a decrease in the LpxC activity that can be restored by subsequent addition of Zn2+. However, high concentrations of Zn2+ also inhibit LpxC. Addition of Co2+, Ni2+, or Mn2+ to apo-LpxC also activates the enzyme to varying degrees while no additional activity is observed upon the addition of Cd2+, Ca2+, Mg2+, or Cu2+. This is consistent with the profile of metals that substitute for catalytic zinc ions in metalloproteinases. Co2+ ions stimulate LpxC activity maximally at a stoichiometry of 1:1. These data demonstrate that E. coli LpxC is a metalloenzyme that requires bound Zn2+ for optimal activity.
UDP-3-O-(R-3-羟基肉豆蔻酰基)-GlcNAc脱乙酰酶(LpxC)催化脂质A生物合成中的关键步骤,因此是一个潜在的抗生素作用靶点。异羟肟酸化合物对该酶的抑制作用[大西,H.R.;佩拉克,B.A.;格肯斯,L.S.;西尔弗,L.L.;卡汉,F.M.;陈,M.H.;帕切特,A.A.;斯塔库拉,S.S.;安德森,M.S.;雷茨,C.R.H.(1996年)《科学》274卷,980 - 982页]表明存在金属离子辅因子。我们使用光谱分析和动力学分析研究了脱乙酰酶的底物特异性和金属依赖性。对生理底物UDP-3-O-(R-3-羟基肉豆蔻酰基)-GlcNAc和替代底物UDP-GlcNAc的稳态动力学参数进行比较,结果表明酯连接的R-3-羟基肉豆蔻酰基链使kcat/KM增加了(5×10⁶)倍。金属螯合剂,如吡啶二甲酸(DPA)和乙二胺四乙酸,完全抑制LpxC活性,这表明存在必需的金属离子。等离子体发射光谱法和比色测定法直接证明纯化的LpxC含有结合的Zn²⁺。通过与DPA孵育可以去除这种Zn²⁺,导致LpxC活性降低,随后添加Zn²⁺可使其恢复。然而,高浓度的Zn²⁺也会抑制LpxC。向脱辅基LpxC中添加Co²⁺、Ni²⁺或Mn²⁺也会在不同程度上激活该酶,而添加Cd²⁺、Ca²⁺、Mg²⁺或Cu²⁺时未观察到额外的活性。这与金属蛋白酶中替代催化锌离子的金属情况相符。Co²⁺离子在化学计量比为1:1时最大程度地刺激LpxC活性。这些数据表明大肠杆菌LpxC是一种金属酶,需要结合Zn²⁺以实现最佳活性。