Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada.
Antioxid Redox Signal. 2010 Nov 1;13(9):1403-16. doi: 10.1089/ars.2010.3116.
Reversible changes in the redox state of cysteine residues represent an important mechanism with which to regulate protein function. In mitochondria, such redox reactions modulate the localization or activity of a group of proteins, most of which function in poorly defined pathways with essential roles in copper delivery to cytochrome c oxidase (COX) during holoenzyme biogenesis. To date, a total of 8 soluble (COX17, COX19, COX23, PET191, CMC1-4) and 3 integral membrane (COX11, SCO1, SCO2) accessory proteins with cysteine-containing domains that reside within the mitochondrial intermembrane space (IMS) have been identified in yeast, all of which have human orthologues. Compelling evidence from studies of COX17, SCO1, and SCO2 argues that regulation of the redox state of their cysteines is integral to their metallochaperone function. Redox also appears to be crucial to the regulation of a SCO-dependent, mitochondrial signaling pathway that modulates the rate of copper efflux from the cell. Here, I review our understanding of redox-dependent modulation of copper delivery to COX and IMS-localized copper-zinc superoxide dismutase (SOD1) during the maturation of each enzyme, and discuss how this in turn may serve to functionally couple mitochondrial copper handling pathways with those localized elsewhere in the cell to regulate cellular copper homeostasis.
半胱氨酸残基氧化还原状态的可逆变化是调节蛋白质功能的重要机制。在线粒体中,这种氧化还原反应调节一组蛋白质的定位或活性,其中大多数蛋白质在功能上与细胞色素 c 氧化酶(COX)的铜递过程有关,但其作用途径尚不清楚。迄今为止,在酵母中已经鉴定出总共 8 种可溶性(COX17、COX19、COX23、PET191、CMC1-4)和 3 种整合膜(COX11、SCO1、SCO2)辅助蛋白,它们都含有半胱氨酸结构域位于线粒体膜间隙(IMS)内。来自 COX17、SCO1 和 SCO2 的研究的有力证据表明,其半胱氨酸氧化还原状态的调节对于其金属伴侣功能至关重要。氧化还原状态似乎对 SCO 依赖性线粒体信号通路的调节也至关重要,该信号通路调节铜从细胞中流出的速率。在这里,我回顾了我们对半胱氨酸依赖性调节铜向 COX 和 IMS 定位的铜锌超氧化物歧化酶(SOD1)的理解,讨论了这反过来如何有助于将线粒体铜处理途径与细胞内其他部位的途径功能偶联,以调节细胞内铜稳态。