文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人类和小鼠皮质锥体神经元中树突棘大小和密度的原则

Principles for Dendritic Spine Size and Density in Human and Mouse Cortical Pyramidal Neurons.

作者信息

Benavides-Piccione Ruth, Fernaud-Espinosa Isabel, Kastanauskaite Asta, DeFelipe Javier

机构信息

Instituto Cajal (CSIC), Madrid, Spain.

Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid (UPM), Campus Montegancedo S/N, Pozuelo de Alarcón, Madrid, Spain.

出版信息

J Comp Neurol. 2025 Jun;533(6):e70060. doi: 10.1002/cne.70060.


DOI:10.1002/cne.70060
PMID:40421877
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12108034/
Abstract

Dendritic spines of pyramidal neurons are the targets of most excitatory synapses in the cerebral cortex, and dendritic spine morphology directly reflects their function. However, there are scarce data available regarding both the detailed morphology of these structures for the human cerebral cortex and the extent to which they differ in comparison with other species. Thus, in the present study, we used intracellular injections of Lucifer yellow to reconstruct-in three dimensions-the morphology of basal dendritic spines from pyramidal cells in the human and mouse CA1 hippocampal region and compared these spines with those of the human temporal and cingular cortex. We found that human hippocampal dendrites show lower spine density, larger volume, and longer length of dendritic spines than mouse CA1 spines. Furthermore, human hippocampal dendrites show higher spine density, smaller spine volume, and shorter length compared to dendritic spines from the human temporal and cingular cortex. This morphological diversity suggests an equally large variability of synaptic strength and learning rules across these brain regions in humans and between humans and mice. Nevertheless, a balance between size and density was found in all cases, which may be a cortical rule maintained across cortical areas and species.

摘要

锥体神经元的树突棘是大脑皮质中大多数兴奋性突触的靶点,树突棘形态直接反映其功能。然而,关于人类大脑皮质中这些结构的详细形态以及与其他物种相比它们的差异程度,现有数据稀缺。因此,在本研究中,我们通过细胞内注射路西法黄,三维重建了人类和小鼠CA1海马区锥体细胞基底树突棘的形态,并将这些树突棘与人类颞叶和扣带回皮质的树突棘进行比较。我们发现,人类海马体树突的棘密度较低,体积较大,树突棘长度比小鼠CA1区的树突棘更长。此外,与人类颞叶和扣带回皮质的树突棘相比,人类海马体树突的棘密度更高,棘体积更小,长度更短。这种形态多样性表明,人类这些脑区之间以及人类与小鼠之间突触强度和学习规则的变异性同样很大。然而,在所有情况下都发现了大小和密度之间的平衡,这可能是跨皮质区域和物种维持的一种皮质规则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/197e/12108034/6128dbbf28ab/CNE-533-e70060-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/197e/12108034/1895abbb1c93/CNE-533-e70060-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/197e/12108034/56a57cbd8f03/CNE-533-e70060-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/197e/12108034/8e8f418178ca/CNE-533-e70060-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/197e/12108034/6128dbbf28ab/CNE-533-e70060-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/197e/12108034/1895abbb1c93/CNE-533-e70060-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/197e/12108034/56a57cbd8f03/CNE-533-e70060-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/197e/12108034/8e8f418178ca/CNE-533-e70060-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/197e/12108034/6128dbbf28ab/CNE-533-e70060-g005.jpg

相似文献

[1]
Principles for Dendritic Spine Size and Density in Human and Mouse Cortical Pyramidal Neurons.

J Comp Neurol. 2025-6

[2]
Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions.

Cereb Cortex. 2012-6-17

[3]
Density and morphology of dendritic spines in mouse neocortex.

Neuroscience. 2006

[4]
Key morphological features of human pyramidal neurons.

Cereb Cortex. 2024-5-2

[5]
Comparison of Golgi-Cox and Intracellular Loading of Lucifer Yellow for Dendritic Spine Density and Morphology Analysis in the Mouse Brain.

Neuroscience. 2022-8-21

[6]
Pyramidal Neurons in Different Cortical Layers Exhibit Distinct Dynamics and Plasticity of Apical Dendritic Spines.

Front Neural Circuits. 2017-6-19

[7]
Variation in Pyramidal Cell Morphology Across the Human Anterior Temporal Lobe.

Cereb Cortex. 2021-7-5

[8]
Random positions of dendritic spines in human cerebral cortex.

J Neurosci. 2014-7-23

[9]
3D morphology-based clustering and simulation of human pyramidal cell dendritic spines.

PLoS Comput Biol. 2018-6-13

[10]
Cortical area and species differences in dendritic spine morphology.

J Neurocytol. 2002

本文引用的文献

[1]
Key morphological features of human pyramidal neurons.

Cereb Cortex. 2024-5-2

[2]
Signature morpho-electric, transcriptomic, and dendritic properties of human layer 5 neocortical pyramidal neurons.

Neuron. 2021-9-15

[3]
Variation in Pyramidal Cell Morphology Across the Human Anterior Temporal Lobe.

Cereb Cortex. 2021-7-5

[4]
Differential Structure of Hippocampal CA1 Pyramidal Neurons in the Human and Mouse.

Cereb Cortex. 2020-3-21

[5]
Selective Loss of Thin Spines in Area 7a of the Primate Intraparietal Sulcus Predicts Age-Related Working Memory Impairment.

J Neurosci. 2018-10-24

[6]
Enhanced Dendritic Compartmentalization in Human Cortical Neurons.

Cell. 2018-10-18

[7]
Human Cortical Pyramidal Neurons: From Spines to Spikes via Models.

Front Cell Neurosci. 2018-6-29

[8]
Synaptic plasticity in dendrites: complications and coping strategies.

Curr Opin Neurobiol. 2017-4-25

[9]
Metabolomics and neuroanatomical evaluation of post-mortem changes in the hippocampus.

Brain Struct Funct. 2017-8

[10]
Unique membrane properties and enhanced signal processing in human neocortical neurons.

Elife. 2016-10-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索