Suppr超能文献

生物信息学作为评估亚细胞蛋白质组学策略质量和推断蛋白质功能的工具:以植物细胞壁蛋白质组学为例

Bioinformatics as a tool for assessing the quality of sub-cellular proteomic strategies and inferring functions of proteins: plant cell wall proteomics as a test case.

作者信息

Clemente Hélène San, Pont-Lezica Rafael, Jamet Elisabeth

机构信息

Surfaces cellulaires et Signalisation chez les Végétaux, UMR 5546 CNRS-UPS-Université de Toulouse, Pôle de Biotechnologie Végétale, 24 chemin de Borde-Rouge, BP 42617 Auzeville, 31326 Castanet-Tolosan, France.

出版信息

Bioinform Biol Insights. 2009 Feb 18;3:15-28. doi: 10.4137/bbi.s2065.

Abstract

Bioinformatics is used at three different steps of proteomic studies of sub-cellular compartments. First one is protein identification from mass spectrometry data. Second one is prediction of sub-cellular localization, and third one is the search of functional domains to predict the function of identified proteins in order to answer biological questions. The aim of the work was to get a new tool for improving the quality of proteomics of sub-cellular compartments. Starting from the analysis of problems found in databases, we designed a new Arabidopsis database named ProtAnnDB (http://www.polebio.scsv.ups-tlse.fr/ProtAnnDB/). It collects in one page predictions of sub-cellular localization and of functional domains made by available software. Using this database allows not only improvement of interpretation of proteomic data (top-down analysis), but also of procedures to isolate sub-cellular compartments (bottom-up quality control).

摘要

生物信息学用于亚细胞区室蛋白质组学研究的三个不同步骤。第一个步骤是从质谱数据中鉴定蛋白质。第二个步骤是预测亚细胞定位,第三个步骤是搜索功能域以预测已鉴定蛋白质的功能,从而回答生物学问题。这项工作的目的是获得一种新工具,以提高亚细胞区室蛋白质组学的质量。从对数据库中发现的问题进行分析开始,我们设计了一个名为ProtAnnDB(http://www.polebio.scsv.ups-tlse.fr/ProtAnnDB/)的拟南芥新数据库。它在一个页面中收集了可用软件对亚细胞定位和功能域的预测。使用这个数据库不仅可以改进蛋白质组学数据的解释(自上而下分析),还可以改进分离亚细胞区室的程序(自下而上质量控制)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ef/2808182/10eed5240c8e/bbi-2009-015f1.jpg

相似文献

2
WallProtDB, a database resource for plant cell wall proteomics.
Plant Methods. 2015 Jan 16;11(1):2. doi: 10.1186/s13007-015-0045-y. eCollection 2015.
5
Improving Proteoform Identifications in Complex Systems Through Integration of Bottom-Up and Top-Down Data.
J Proteome Res. 2020 Aug 7;19(8):3510-3517. doi: 10.1021/acs.jproteome.0c00332. Epub 2020 Jul 10.
7
Proteomic approaches to study plant-pathogen interactions.
Phytochemistry. 2010 Mar;71(4):351-62. doi: 10.1016/j.phytochem.2009.11.005. Epub 2009 Dec 11.
8
Integrating cell biology and proteomic approaches in plants.
J Proteomics. 2017 Oct 3;169:165-175. doi: 10.1016/j.jprot.2017.04.020. Epub 2017 Apr 22.
9
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
10
TopPIC: a software tool for top-down mass spectrometry-based proteoform identification and characterization.
Bioinformatics. 2016 Nov 15;32(22):3495-3497. doi: 10.1093/bioinformatics/btw398. Epub 2016 Jul 16.

引用本文的文献

3
The Cell Wall Proteome of Reveals Specificities Compared to Those of Flowering Plants.
Front Plant Sci. 2022 Jan 13;12:765846. doi: 10.3389/fpls.2021.765846. eCollection 2021.
4
Using FIBexDB for In-Depth Analysis of Flax Lectin Gene Expression in Response to Infection.
Plants (Basel). 2022 Jan 7;11(2):163. doi: 10.3390/plants11020163.
5
Sorghum's Whole-Plant Transcriptome and Proteome Responses to Drought Stress: A Review.
Life (Basel). 2021 Jul 17;11(7):704. doi: 10.3390/life11070704.
6
Physiological and Biochemical Traits of Two Major Accessions, Col-0 and Ws, Under Salinity.
Front Plant Sci. 2021 Jun 21;12:639154. doi: 10.3389/fpls.2021.639154. eCollection 2021.
7
Conserved co-functional network between maize and Arabidopsis aid in the identification of seed defective genes in maize.
Genes Genomics. 2021 May;43(5):433-446. doi: 10.1007/s13258-021-01067-2. Epub 2021 Mar 2.

本文引用的文献

2
Using the Arabidopsis Information Resource (TAIR) to find information about Arabidopsis genes.
Curr Protoc Bioinformatics. 2005 Apr;Chapter 1:Unit 1.11. doi: 10.1002/0471250953.bi0111s9.
3
Recent advances in plant cell wall proteomics.
Proteomics. 2008 Feb;8(4):893-908. doi: 10.1002/pmic.200700938.
4
The Pfam protein families database.
Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8. doi: 10.1093/nar/gkm960. Epub 2007 Nov 26.
5
The 20 years of PROSITE.
Nucleic Acids Res. 2008 Jan;36(Database issue):D245-9. doi: 10.1093/nar/gkm977. Epub 2007 Nov 14.
7
Locating proteins in the cell using TargetP, SignalP and related tools.
Nat Protoc. 2007;2(4):953-71. doi: 10.1038/nprot.2007.131.
8
NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins.
Nucleic Acids Res. 2007 Jan;35(Database issue):D61-5. doi: 10.1093/nar/gkl842. Epub 2006 Nov 27.
10
Cell wall proteins: a new insight through proteomics.
Trends Plant Sci. 2006 Jan;11(1):33-9. doi: 10.1016/j.tplants.2005.11.006. Epub 2005 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验