Allignol Arthur, Schumacher Martin, Beyersmann Jan
Freiburg Center for Data Analysis and Modeling, University of Freiburg, Eckerstrasse 1, Freiburg, Germany.
Biom J. 2010 Feb;52(1):126-37. doi: 10.1002/bimj.200900039.
The Aalen-Johansen estimator is the standard nonparametric estimator of the cumulative incidence function in competing risks. Estimating its variance in small samples has attracted some interest recently, together with a critique of the usual martingale-based estimators. We show that the preferred estimator equals a Greenwood-type estimator that has been derived as a recursion formula using counting processes and martingales in a more general multistate framework. We also extend previous simulation studies on estimating the variance of the Aalen-Johansen estimator in small samples to left-truncated observation schemes, which may conveniently be handled within the counting processes framework. This investigation is motivated by a real data example on spontaneous abortion in pregnancies exposed to coumarin derivatives, where both competing risks and left-truncation have recently been shown to be crucial methodological issues (Meister and Schaefer (2008), Reproductive Toxicology 26, 31-35). Multistate-type software and data are available online to perform the analyses. The Greenwood-type estimator is recommended for use in practice.
阿伦-约翰森估计量是竞争风险中累积发病率函数的标准非参数估计量。最近,估计其在小样本中的方差引起了一些关注,同时也引发了对常用的基于鞅的估计量的批评。我们表明,首选估计量等于一种格林伍德型估计量,该估计量是在更一般的多状态框架中使用计数过程和鞅作为递归公式推导出来的。我们还将先前关于估计小样本中阿伦-约翰森估计量方差的模拟研究扩展到左截断观测方案,这可以在计数过程框架内方便地处理。这项研究的动机来自一个关于暴露于香豆素衍生物的妊娠中自然流产的真实数据示例,最近已表明竞争风险和左截断都是关键的方法学问题(迈斯特和舍费尔(2008年),《生殖毒理学》26卷,第31 - 35页)。多状态类型的软件和数据可在线获取以进行分析。建议在实际应用中使用格林伍德型估计量。