Departament de Química Física & IQTCUB, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.
Chemistry. 2010 Mar 1;16(9):2741-50. doi: 10.1002/chem.200903221.
The crystal structure of the spin-canted antiferromagnet beta-p-NCC(6)F(4)CNSSN* at 12 K (reported in this work) was found to adopt the same orthorhombic space group as that previously determined at 160 K. The change in the magnetic properties of these two crystal structures has been rigorously studied by applying a first-principles bottom-up procedure above and below the magnetic transition temperature (36 K). Calculations of the magnetic exchange pathways on the 160 K structure reveal only one significant exchange coupling (J(d1)=-33.8 cm(-1)), which generates a three-dimensional diamond-like magnetic topology within the crystal. The computed magnetic susceptibility, chi(T), which was determined by using this magnetic topology, quantitatively reproduces the experimental features observed above 36 K. Owing to the anisotropic contraction of the crystal lattice, both the geometry of the intermolecular contacts at 12 K and the microscopic J(AB) radical-radical magnetic interactions change: the J(d1) radical-radical interaction becomes even more antiferromagnetic (-43.2 cm(-1)) and two additional ferromagnetic interactions appear (+7.6 and +7.3 cm(-1)). Consequently, the magnetic topologies of the 12 and 160 K structures differ: the 12 K magnetic topology exhibits two ferromagnetic sublattices that are antiferromagnetically coupled. The chi(T) curve, computed below 36 K at the limit of zero magnetic field by using the 12 K magnetic topology, reproduces the shape of the residual magnetic susceptibility (having subtracted the contribution to the magnetization arising from spin canting). The evolution of these two ferromagnetic J(AB) contributions explains the change in the slope of the residual magnetic susceptibility in the low-temperature region.
在 12 K 下(本工作中报道),β-p-NCC(6)F(4)CNSSN*自旋倾斜反铁磁体的晶体结构被发现采用与在 160 K 下相同的正交空间群。通过在磁转变温度(36 K)以上和以下应用自下而上的第一性原理方法,严格研究了这两个晶体结构的磁性质变化。在 160 K 结构上计算磁交换途径仅揭示了一个显著的交换耦合(J(d1)=-33.8 cm(-1)),它在晶体中产生了三维类似金刚石的磁拓扑结构。通过使用这种磁拓扑结构确定的计算磁化率 chi(T)定量地再现了在 36 K 以上观察到的实验特征。由于晶体晶格的各向异性收缩,12 K 下的分子间接触的几何形状和微观 J(AB)自由基-自由基磁相互作用都发生了变化:自由基-自由基相互作用变得更加反铁磁(-43.2 cm(-1)),并且出现了两个额外的铁磁相互作用(+7.6 和+7.3 cm(-1))。因此,12 K 和 160 K 结构的磁拓扑结构不同:12 K 磁拓扑结构表现出两个反铁磁耦合的铁磁子晶格。在使用 12 K 磁拓扑结构在零磁场极限下计算低于 36 K 的 chi(T)曲线时,它再现了剩余磁化率的形状(减去了自旋倾斜引起的对磁化的贡献)。这两个铁磁 J(AB)贡献的演变解释了低温区剩余磁化率斜率的变化。