Wiederhold Katrin, Fasshauer Dirk
Research Group Structural Biochemistry, Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany.
J Biol Chem. 2009 May 8;284(19):13143-52. doi: 10.1074/jbc.M900703200. Epub 2009 Mar 3.
The three key players in the exocytotic release of neurotransmitters from synaptic vesicles are the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins synaptobrevin 2, syntaxin 1a, and SNAP-25. Their assembly into a tight four-helix bundle complex is thought to pull the two membranes into close proximity. It is debated, however, whether the energy generated suffices for membrane fusion. Here, we have determined the thermodynamic properties of the individual SNARE assembly steps by isothermal titration calorimetry. We found extremely large favorable enthalpy changes counterbalanced by positive entropy changes, reflecting the major conformational changes upon assembly. To circumvent the fact that ternary complex formation is essentially irreversible, we used a stabilized syntaxin-SNAP-25 heterodimer to study synaptobrevin binding. This strategy revealed that the N-terminal synaptobrevin coil binds reversibly with nanomolar affinity. This suggests that individual, membrane-bridging SNARE complexes can provide much less pulling force than previously claimed.
从突触小泡中胞吐释放神经递质的三个关键蛋白是SNARE(可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体)蛋白突触融合蛋白2、 syntaxin 1a和SNAP-25。它们组装成紧密的四螺旋束复合物被认为能使两个膜紧密靠近。然而,所产生的能量是否足以实现膜融合仍存在争议。在这里,我们通过等温滴定量热法确定了各个SNARE组装步骤的热力学性质。我们发现极大的有利焓变被正熵变所抵消,这反映了组装时的主要构象变化。为了规避三元复合物形成基本上不可逆这一事实,我们使用了一种稳定的syntaxin-SNAP-25异二聚体来研究突触融合蛋白的结合。该策略表明,N端突触融合蛋白卷曲以纳摩尔亲和力可逆结合。这表明单个的、跨膜的SNARE复合物提供的拉力比之前声称的要小得多。