Suppr超能文献

从N端到C端的SNARE复合体顺序组装驱动分泌囊泡的引发和融合。

Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles.

作者信息

Sørensen Jakob B, Wiederhold Katrin, Müller Emil M, Milosevic Ira, Nagy Gábor, de Groot Bert L, Grubmüller Helmut, Fasshauer Dirk

机构信息

Department of Membrane Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.

出版信息

EMBO J. 2006 Mar 8;25(5):955-66. doi: 10.1038/sj.emboj.7601003. Epub 2006 Feb 23.

Abstract

During exocytosis a four-helical coiled coil is formed between the three SNARE proteins syntaxin, synaptobrevin and SNAP-25, bridging vesicle and plasma membrane. We have investigated the assembly pathway of this complex by interfering with the stability of the hydrophobic interaction layers holding the complex together. Mutations in the C-terminal end affected fusion triggering in vivo and led to two-step unfolding of the SNARE complex in vitro, indicating that the C-terminal end can assemble/disassemble independently. Free energy perturbation calculations showed that assembly of the C-terminal end could liberate substantial amounts of energy that may drive fusion. In contrast, similar N-terminal mutations were without effects on exocytosis, and mutations in the middle of the complex selectively interfered with upstream maturation steps (vesicle priming), but not with fusion triggering. We conclude that the SNARE complex forms in the N- to C-terminal direction, and that a partly assembled intermediate corresponds to the primed vesicle state.

摘要

在胞吐作用过程中,Syntaxin、突触囊泡蛋白和SNAP-25这三种SNARE蛋白之间会形成一个四螺旋卷曲螺旋结构,将囊泡和质膜连接起来。我们通过干扰维持该复合物稳定的疏水相互作用层的稳定性,研究了这个复合物的组装途径。C末端的突变影响了体内的融合触发,并导致SNARE复合物在体外分两步展开,这表明C末端可以独立组装/拆卸。自由能微扰计算表明,C末端的组装可以释放大量可能驱动融合的能量。相比之下,类似的N末端突变对胞吐作用没有影响,复合物中间部分的突变则选择性地干扰了上游成熟步骤(囊泡引发),但不影响融合触发。我们得出结论,SNARE复合物是从N末端向C末端方向形成的,并且部分组装的中间体对应于引发的囊泡状态。

相似文献

1
Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles.
EMBO J. 2006 Mar 8;25(5):955-66. doi: 10.1038/sj.emboj.7601003. Epub 2006 Feb 23.
2
N- to C-terminal SNARE complex assembly promotes rapid membrane fusion.
Science. 2006 Aug 4;313(5787):673-6. doi: 10.1126/science.1129486.
4
Extension of Helix 12 in Munc18-1 Induces Vesicle Priming.
J Neurosci. 2016 Jun 29;36(26):6881-91. doi: 10.1523/JNEUROSCI.0007-16.2016.
6
The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis.
Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1627-32. doi: 10.1073/pnas.251673298.
7
Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion.
Nature. 2002 Feb 7;415(6872):646-50. doi: 10.1038/415646a.
8
Is assembly of the SNARE complex enough to fuel membrane fusion?
J Biol Chem. 2009 May 8;284(19):13143-52. doi: 10.1074/jbc.M900703200. Epub 2009 Mar 3.
9
SNARE conformational changes that prepare vesicles for exocytosis.
Cell Metab. 2010 Jul 7;12(1):19-29. doi: 10.1016/j.cmet.2010.05.013.
10
Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes.
Cell. 2009 Sep 4;138(5):935-46. doi: 10.1016/j.cell.2009.07.027. Epub 2009 Aug 27.

引用本文的文献

1
Uncovering the Mechanisms of Intracellular Membrane Trafficking by Reconstituted Membrane Systems.
Membranes (Basel). 2025 May 16;15(5):154. doi: 10.3390/membranes15050154.
2
Multiple structural states in an intrinsically disordered protein, SNAP-25, using circular dichroism.
Biophys J. 2025 Jun 3;124(11):1828-1842. doi: 10.1016/j.bpj.2025.02.003. Epub 2025 Feb 8.
4
After their membrane assembly, Sec18 (NSF) and Sec17 (SNAP) promote membrane fusion.
Mol Biol Cell. 2024 Dec 1;35(12):ar150. doi: 10.1091/mbc.E24-10-0439. Epub 2024 Oct 30.
5
A look beyond the QR code of SNARE proteins.
Protein Sci. 2024 Sep;33(9):e5158. doi: 10.1002/pro.5158.
6
Mutations of Single Residues in the Complexin N-terminus Exhibit Distinct Phenotypes in Synaptic Vesicle Fusion.
J Neurosci. 2024 Jul 31;44(31):e0076242024. doi: 10.1523/JNEUROSCI.0076-24.2024.
7
Sec18 binds the tethering/SM complex HOPS to engage the Qc-SNARE for membrane fusion.
Mol Biol Cell. 2024 May 1;35(5):ar71. doi: 10.1091/mbc.E24-02-0060. Epub 2024 Mar 27.
10
MARCKS Effector Domain, a reversible lipid ligand, illuminates late stages of membrane fusion.
Mol Biol Cell. 2023 Nov 1;34(12):ar123. doi: 10.1091/mbc.E23-06-0228. Epub 2023 Sep 6.

本文引用的文献

1
Alternative splicing of SNAP-25 regulates secretion through nonconservative substitutions in the SNARE domain.
Mol Biol Cell. 2005 Dec;16(12):5675-85. doi: 10.1091/mbc.e05-07-0595. Epub 2005 Sep 29.
2
Distinct kinetic changes in neurotransmitter release after SNARE protein cleavage.
Science. 2005 Jul 15;309(5733):491-4. doi: 10.1126/science.1112645.
3
v-SNAREs control exocytosis of vesicles from priming to fusion.
EMBO J. 2005 Jun 15;24(12):2114-26. doi: 10.1038/sj.emboj.7600696. Epub 2005 May 26.
4
Tracking SNARE complex formation in live endocrine cells.
Science. 2004 Nov 5;306(5698):1042-6. doi: 10.1126/science.1102559.
5
Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis.
Science. 2004 Apr 9;304(5668):289-92. doi: 10.1126/science.1095801. Epub 2004 Mar 11.
6
Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles.
Pflugers Arch. 2004 Jul;448(4):347-62. doi: 10.1007/s00424-004-1247-8. Epub 2004 Mar 2.
7
A transient N-terminal interaction of SNAP-25 and syntaxin nucleates SNARE assembly.
J Biol Chem. 2004 Feb 27;279(9):7613-21. doi: 10.1074/jbc.M312064200. Epub 2003 Dec 9.
8
Evidence for SNARE zippering during Ca2+-triggered exocytosis in PC12 cells.
Neuropharmacology. 2003 Nov;45(6):777-86. doi: 10.1016/s0028-3908(03)00318-6.
9
Tuning exocytosis for speed: fast and slow modes.
Biochim Biophys Acta. 2003 Aug 18;1641(2-3):157-65. doi: 10.1016/s0167-4889(03)00093-4.
10
Synaptotagmin I, a Ca2+ sensor for neurotransmitter release.
Trends Neurosci. 2003 Aug;26(8):413-22. doi: 10.1016/S0166-2236(03)00195-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验