Parkin Christopher G, Davidson Jaime A
CGParkin Communications, Inc., Carmel, Indiana 46032, USA.
J Diabetes Sci Technol. 2009 May 1;3(3):500-8. doi: 10.1177/193229680900300314.
Self-monitoring of blood glucose (SMBG) is an important adjunct to hemoglobin A1c (HbA1c) testing. This action can distinguish between fasting, preprandial, and postprandial hyperglycemia; detect glycemic excursions; identify and monitor resolution of hypoglycemia; and provide immediate feedback to patients about the effect of food choices, activity, and medication on glycemic control. Pattern analysis is a systematic approach to identifying glycemic patterns within SMBG data and then taking appropriate action based upon those results. The use of pattern analysis involves: (1) establishing pre- and postprandial glucose targets; (2) obtaining data on glucose levels, carbohydrate intake, medication administration (type, dosages, timing), activity levels and physical/emotional stress; (3) analyzing data to identify patterns of glycemic excursions, assessing any influential factors, and implementing appropriate action(s); and (4) performing ongoing SMBG to assess the impact of any therapeutic changes made. Computer-based and paper-based data collection and management tools can be developed to perform pattern analysis for identifying patterns in SMBG data. This approach to interpreting SMBG data facilitates rational therapeutic adjustments in response to this information. Pattern analysis of SMBG data can be of equal or greater value than measurement of HbA1c levels.
血糖自我监测(SMBG)是糖化血红蛋白(HbA1c)检测的重要辅助手段。这一举措能够区分空腹、餐前和餐后高血糖;检测血糖波动;识别并监测低血糖的缓解情况;并就食物选择、活动及药物对血糖控制的影响向患者提供即时反馈。模式分析是一种系统方法,用于在血糖自我监测数据中识别血糖模式,然后根据这些结果采取适当行动。模式分析的应用包括:(1)设定餐前和餐后血糖目标;(2)获取血糖水平、碳水化合物摄入量、药物给药(类型、剂量、时间)、活动水平以及身体/情绪应激的数据;(3)分析数据以识别血糖波动模式,评估任何影响因素,并采取适当行动;以及(4)持续进行血糖自我监测,以评估所做任何治疗改变的影响。可以开发基于计算机和纸质的数据收集与管理工具,用于对血糖自我监测数据进行模式分析以识别模式。这种解读血糖自我监测数据的方法有助于根据这些信息进行合理的治疗调整。血糖自我监测数据的模式分析可能与糖化血红蛋白水平测量具有同等或更高的价值。