Suppr超能文献

计算机模拟临床前试验:1型糖尿病闭环控制的方法与工程指南

In silico preclinical trials: methodology and engineering guide to closed-loop control in type 1 diabetes mellitus.

作者信息

Patek Stephen D, Bequette B Wayne, Breton Marc, Buckingham Bruce A, Dassau Eyal, Doyle Francis J, Lum John, Magni Lalo, Zisser Howard

机构信息

Department of Systems and Information Engineering, University of Virginia, Charlottesville, Virginia, USA.

出版信息

J Diabetes Sci Technol. 2009 Mar 1;3(2):269-82. doi: 10.1177/193229680900300207.

Abstract

This article sets forth guidelines for in silico (simulation-based) proof-of-concept testing of artificial pancreas control algorithms. The goal was to design a test procedure that can facilitate regulatory approval [e.g., Food and Drug Administration Investigational Device Exemption] for General Clinical Research Center experiments without preliminary testing on animals. The methodology is designed around a software package, based on a recent meal simulation model of the glucose-insulin system. Putting a premium on generality, this document starts by specifying a generic, rather abstract, meta-algorithm for control. The meta-algorithm has two main components: (1) patient assessment and tuning of control parameters, i.e., algorithmic processes for collection and processing patient data prior to closed-loop operation, and (2) controller warm-up and run-time operation, i.e., algorithmic processes for initializing controller states and managing blood glucose. The simulation-based testing methodology is designed to reveal the conceptual/mathematical operation of both main components, as applied to a large population of in silico patients with type 1 diabetes mellitus.

摘要

本文提出了用于人工胰腺控制算法的计算机模拟(基于仿真)概念验证测试的指导方针。目标是设计一种测试程序,该程序可以促进通用临床研究中心实验的监管批准[例如,食品药品监督管理局研究性器械豁免],而无需在动物身上进行初步测试。该方法是围绕一个软件包设计的,该软件包基于最近的葡萄糖-胰岛素系统进餐模拟模型。本文强调通用性,首先指定了一个通用的、相当抽象的控制元算法。该元算法有两个主要组成部分:(1)患者评估和控制参数调整,即在闭环操作之前收集和处理患者数据的算法过程,以及(2)控制器预热和运行时操作,即初始化控制器状态和管理血糖的算法过程。基于仿真的测试方法旨在揭示这两个主要组成部分在大量1型糖尿病计算机模拟患者中的概念性/数学操作。

相似文献

1
In silico preclinical trials: methodology and engineering guide to closed-loop control in type 1 diabetes mellitus.
J Diabetes Sci Technol. 2009 Mar 1;3(2):269-82. doi: 10.1177/193229680900300207.
2
In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes.
J Diabetes Sci Technol. 2009 Jan;3(1):44-55. doi: 10.1177/193229680900300106.
3
Run-to-run tuning of model predictive control for type 1 diabetes subjects: in silico trial.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1091-8. doi: 10.1177/193229680900300512.
4
Control to range for diabetes: functionality and modular architecture.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1058-65. doi: 10.1177/193229680900300509.
5
Artificial pancreas: model predictive control design from clinical experience.
J Diabetes Sci Technol. 2013 Nov 1;7(6):1470-83. doi: 10.1177/193229681300700607.
6
Modular closed-loop control of diabetes.
IEEE Trans Biomed Eng. 2012 Nov;59(11):2986-99. doi: 10.1109/TBME.2012.2192930. Epub 2012 Apr 3.
7
An improved PID switching control strategy for type 1 diabetes.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:5041-4. doi: 10.1109/IEMBS.2006.259541.
9
A composite model of glucagon-glucose dynamics for in silico testing of bihormonal glucose controllers.
J Diabetes Sci Technol. 2013 Jul 1;7(4):941-51. doi: 10.1177/193229681300700416.
10
Method to generate a large cohort in-silico for type 1 diabetes.
Comput Methods Programs Biomed. 2020 Sep;193:105523. doi: 10.1016/j.cmpb.2020.105523. Epub 2020 May 1.

引用本文的文献

1
Validation in diabetic rats of a fully automated insulin delivery system based on impulsive offset-free MPC control.
PLoS One. 2025 Sep 4;20(9):e0330121. doi: 10.1371/journal.pone.0330121. eCollection 2025.
2
Immune-evasive beta cells in type 1 diabetes: innovations in genetic engineering, biomaterials, and computational modeling.
Front Immunol. 2025 Aug 19;16:1618086. doi: 10.3389/fimmu.2025.1618086. eCollection 2025.
4
Connecting Rodent and Human Pharmacokinetic Models for the Design and Translation of Glucose-Responsive Insulin.
Diabetes. 2020 Aug;69(8):1815-1826. doi: 10.2337/db19-0879. Epub 2020 Mar 9.
5
Population-Specific Models of Glycemic Control in Intensive Care: Towards a Simulation-Based Methodology for Protocol Optimization.
Proc Am Control Conf. 2015 Jul;2015:5084-5090. doi: 10.1109/ACC.2015.7172132. Epub 2015 Jul 30.
6
Translation Between Two Models; Application with Integrated Glucose Homeostasis Models.
Pharm Res. 2019 Apr 17;36(6):86. doi: 10.1007/s11095-019-2592-9.
7
Neural network-based model predictive control for type 1 diabetic rats on artificial pancreas system.
Med Biol Eng Comput. 2019 Jan;57(1):177-191. doi: 10.1007/s11517-018-1872-6. Epub 2018 Aug 1.
8
Autoregressive Modeling of Drift and Random Error to Characterize a Continuous Intravascular Glucose Monitoring Sensor.
J Diabetes Sci Technol. 2018 Jan;12(1):90-104. doi: 10.1177/1932296817719089. Epub 2017 Jul 14.
9
Model-Free Machine Learning in Biomedicine: Feasibility Study in Type 1 Diabetes.
PLoS One. 2016 Jul 21;11(7):e0158722. doi: 10.1371/journal.pone.0158722. eCollection 2016.
10
Design and Evaluation of a Robust PID Controller for a Fully Implantable Artificial Pancreas.
Ind Eng Chem Res. 2015 Oct 28;54(42):10311-10321. doi: 10.1021/acs.iecr.5b01237. Epub 2015 Jun 9.

本文引用的文献

3
Modular artificial beta-cell system: a prototype for clinical research.
J Diabetes Sci Technol. 2008 Sep;2(5):863-72. doi: 10.1177/193229680800200518.
4
Evaluating the efficacy of closed-loop glucose regulation via control-variability grid analysis.
J Diabetes Sci Technol. 2008 Jul;2(4):630-5. doi: 10.1177/193229680800200414.
5
A benchmark data set for model-based glycemic control in critical care.
J Diabetes Sci Technol. 2008 Jul;2(4):584-94. doi: 10.1177/193229680800200409.
6
Model predictive control of type 1 diabetes: an in silico trial.
J Diabetes Sci Technol. 2007 Nov;1(6):804-12. doi: 10.1177/193229680700100603.
7
GIM, simulation software of meal glucose-insulin model.
J Diabetes Sci Technol. 2007 May;1(3):323-30. doi: 10.1177/193229680700100303.
8
Linear quadratic gaussian-based closed-loop control of type 1 diabetes.
J Diabetes Sci Technol. 2007 Nov;1(6):834-41. doi: 10.1177/193229680700100606.
9
Analysis, modeling, and simulation of the accuracy of continuous glucose sensors.
J Diabetes Sci Technol. 2008 Sep;2(5):853-62. doi: 10.1177/193229680800200517.
10
In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes.
J Diabetes Sci Technol. 2009 Jan;3(1):44-55. doi: 10.1177/193229680900300106.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验