Suppr超能文献

人工胰腺β细胞中的安全约束:机载胰岛素模型预测控制的实现

Safety constraints in an artificial pancreatic beta cell: an implementation of model predictive control with insulin on board.

作者信息

Ellingsen Christian, Dassau Eyal, Zisser Howard, Grosman Benyamin, Percival Matthew W, Jovanovic Lois, Doyle Francis J

机构信息

Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106-5080, USA.

出版信息

J Diabetes Sci Technol. 2009 May 1;3(3):536-44. doi: 10.1177/193229680900300319.

Abstract

BACKGROUND

Type 1 diabetes mellitus (T1DM) is characterized by the destruction of pancreatic beta cells, resulting in the inability to produce sufficient insulin to maintain normoglycemia. As a result, people with T1DM depend on exogenous insulin that is given either by multiple daily injections or by an insulin pump to control their blood glucose. A challenging task is to design the next step in T1DM therapy: a fully automated insulin delivery system consisting of an artificial pancreatic beta cell that shall provide both safe and effective therapy. The core of such a system is a control algorithm that calculates the insulin dose based on automated glucose measurements.

METHODS

A model predictive control (MPC) algorithm was designed to control glycemia by controlling exogenous insulin delivery. The MPC algorithm contained a dynamic safety constraint, insulin on board (IOB), which incorporated the clinical values of correction factor and insulin-to-carbohydrate ratio along with estimated insulin action decay curves as part of the optimal control solution.

RESULTS

The results emphasized the ability of the IOB constraint to significantly improve the glucose/insulin control trajectories in the presence of aggressive control actions. The simulation results indicated that 50% of the simulations conducted without the IOB constraint resulted in hypoglycemic events, compared to 10% of the simulations that included the IOB constraint.

CONCLUSIONS

Achieving both efficacy and safety in an artificial pancreatic beta cell calls for an IOB safety constraint that is able to override aggressive control moves (large insulin doses), thereby minimizing the risk of hypoglycemia.

摘要

背景

1型糖尿病(T1DM)的特征是胰腺β细胞被破坏,导致无法产生足够的胰岛素来维持正常血糖水平。因此,T1DM患者依赖通过每日多次注射或胰岛素泵给予的外源性胰岛素来控制血糖。一项具有挑战性的任务是设计T1DM治疗的下一步方案:一种由人工胰腺β细胞组成的全自动胰岛素输送系统,该系统应提供安全有效的治疗。这种系统的核心是一种基于自动血糖测量来计算胰岛素剂量的控制算法。

方法

设计了一种模型预测控制(MPC)算法,通过控制外源性胰岛素输送来控制血糖。MPC算法包含一个动态安全约束,即体内胰岛素(IOB),它将校正因子和胰岛素与碳水化合物比值的临床值以及估计的胰岛素作用衰减曲线纳入最优控制解决方案中。

结果

结果强调了IOB约束在存在激进控制行动时显著改善血糖/胰岛素控制轨迹的能力。模拟结果表明,在没有IOB约束的情况下进行的模拟中有50%导致了低血糖事件,而在包含IOB约束的模拟中这一比例为10%。

结论

在人工胰腺β细胞中实现疗效和安全性需要一个能够超越激进控制行动(大剂量胰岛素)的IOB安全约束,从而将低血糖风险降至最低。

相似文献

2
Zone model predictive control: a strategy to minimize hyper- and hypoglycemic events.
J Diabetes Sci Technol. 2010 Jul 1;4(4):961-75. doi: 10.1177/193229681000400428.
3
Dynamic Rule-Based Algorithm to Tune Insulin-on-Board Constraints for a Hybrid Artificial Pancreas System.
J Healthc Eng. 2020 Jan 11;2020:1414597. doi: 10.1155/2020/1414597. eCollection 2020.
5
Open-loop glucose control: Automatic IOB-based super-bolus feature for commercial insulin pumps.
Comput Methods Programs Biomed. 2018 Jun;159:145-158. doi: 10.1016/j.cmpb.2018.03.007. Epub 2018 Mar 9.
6
Sensitivity of the Predictive Hypoglycemia Minimizer System to the Algorithm Aggressiveness Factor.
J Diabetes Sci Technol. 2015 Jun 30;10(1):104-10. doi: 10.1177/1932296815593292.
7
Interval Safety Layer Coupled With an Impulsive MPC for Artificial Pancreas to Handle Intrapatient Variability.
Front Endocrinol (Lausanne). 2022 Feb 21;13:796521. doi: 10.3389/fendo.2022.796521. eCollection 2022.
8
Glucose clamp algorithms and insulin time-action profiles.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1005-13. doi: 10.1177/193229680900300503.
9
Control to range for diabetes: functionality and modular architecture.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1058-65. doi: 10.1177/193229680900300509.
10
Incorporating Prior Information in Adaptive Model Predictive Control for Multivariable Artificial Pancreas Systems.
J Diabetes Sci Technol. 2022 Jan;16(1):19-28. doi: 10.1177/19322968211059149. Epub 2021 Dec 3.

引用本文的文献

1
Early Stages of Automated Insulin Delivery.
J Diabetes Sci Technol. 2025 Jul;19(4):908-923. doi: 10.1177/19322968251335685. Epub 2025 Jul 1.
2
Supervised and Unsupervised Approaches for the Real-Time Detection of Undesired Insulin Suspension Caused by Malfunctions.
J Diabetes Sci Technol. 2024 Apr 29:19322968241248402. doi: 10.1177/19322968241248402.
3
Glucose Rate-of-Change and Insulin-on-Board Jointly Weighted Zone Model Predictive Control.
IEEE Trans Control Syst Technol. 2023 Sep;31(5):2261-2274. doi: 10.1109/tcst.2023.3291573. Epub 2023 Jul 31.
4
Integration of a Safety Module to Prevent Rebound Hypoglycemia in Closed-Loop Artificial Pancreas Systems.
J Diabetes Sci Technol. 2024 Mar;18(2):318-323. doi: 10.1177/19322968231212205. Epub 2023 Nov 15.
7
An overview of advancements in closed-loop artificial pancreas system.
Heliyon. 2022 Nov 14;8(11):e11648. doi: 10.1016/j.heliyon.2022.e11648. eCollection 2022 Nov.
8
Feasibility and Preliminary Safety of Smartphone-Based Automated Insulin Delivery in Adolescents and Children With Type 1 Diabetes.
J Diabetes Sci Technol. 2024 Mar;18(2):363-371. doi: 10.1177/19322968221116384. Epub 2022 Aug 16.
9
Zone-MPC Automated Insulin Delivery Algorithm Tuned for Pregnancy Complicated by Type 1 Diabetes.
Front Endocrinol (Lausanne). 2022 Mar 22;12:768639. doi: 10.3389/fendo.2021.768639. eCollection 2021.
10
Interval Safety Layer Coupled With an Impulsive MPC for Artificial Pancreas to Handle Intrapatient Variability.
Front Endocrinol (Lausanne). 2022 Feb 21;13:796521. doi: 10.3389/fendo.2022.796521. eCollection 2022.

本文引用的文献

1
Bolus calculator: a review of four "smart" insulin pumps.
Diabetes Technol Ther. 2008 Dec;10(6):441-4. doi: 10.1089/dia.2007.0284.
2
Meal simulation model of the glucose-insulin system.
IEEE Trans Biomed Eng. 2007 Oct;54(10):1740-9. doi: 10.1109/TBME.2007.893506.
4
Standards of medical care in diabetes--2006.
Diabetes Care. 2006 Jan;29 Suppl 1:S4-42.
5
Targeted glycemic reduction in critical care using closed-loop control.
Diabetes Technol Ther. 2005 Apr;7(2):274-82. doi: 10.1089/dia.2005.7.274.
6
7
Insulin kinetics in type-I diabetes: continuous and bolus delivery of rapid acting insulin.
IEEE Trans Biomed Eng. 2005 Jan;52(1):3-12. doi: 10.1109/TBME.2004.839639.
8
Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes.
Physiol Meas. 2004 Aug;25(4):905-20. doi: 10.1088/0967-3334/25/4/010.
9
Dose-response characteristics of insulin action on glucose metabolism: a non-steady-state approach.
Am J Physiol Endocrinol Metab. 2000 May;278(5):E794-801. doi: 10.1152/ajpendo.2000.278.5.E794.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验