Suppr超能文献

糖尿病控制范围:功能与模块化架构。

Control to range for diabetes: functionality and modular architecture.

作者信息

Kovatchev Boris, Patek Stephen, Dassau Eyal, Doyle Francis J, Magni Lalo, De Nicolao Giuseppe, Cobelli Claudio

机构信息

Department of Psychiatry and Neurobehavioral Sciences and Department of Systems and Information Engineering, University of Virginia, Charlottesville, Virginia, USA.

出版信息

J Diabetes Sci Technol. 2009 Sep 1;3(5):1058-65. doi: 10.1177/193229680900300509.

Abstract

BACKGROUND

Closed-loop control of type 1 diabetes is receiving increasing attention due to advancement in glucose sensor and insulin pump technology. Here the function and structure of a class of control algorithms designed to exert control to range, defined as insulin treatment optimizing glycemia within a predefined target range by preventing extreme glucose fluctuations, are studied.

METHODS

The main contribution of the article is definition of a modular architecture for control to range. Emphasis is on system specifications rather than algorithmic realization. The key system architecture elements are two interacting modules: range correction module, which assesses the risk for incipient hyper- or hypoglycemia and adjusts insulin rate accordingly, and safety supervision module, which assesses the risk for hypoglycemia and attenuates or discontinues insulin delivery when necessary. The novel engineering concept of range correction module is that algorithm action is relative to a nominal open-loop strategy-a predefined combination of basal rate and boluses believed to be optimal under nominal conditions.

RESULTS

A proof of concept of the feasibility of our control-to-range strategy is illustrated by using a prototypal implementation tested in silico on patient use cases. These functional and architectural distinctions provide several advantages, including (i) significant insulin delivery corrections are only made if relevant risks are detected; (ii) drawbacks of integral action are avoided, e.g., undershoots with consequent hypoglycemic risks; (iii) a simple linear model is sufficient and complex algorithmic constraints are replaced by safety supervision; and (iv) the nominal profile provides straightforward individualization for each patient.

CONCLUSIONS

We believe that the modular control-to-range system is the best approach to incremental development, regulatory approval, industrial deployment, and clinical acceptance of closed-loop control for diabetes.

摘要

背景

由于葡萄糖传感器和胰岛素泵技术的进步,1型糖尿病的闭环控制受到越来越多的关注。本文研究了一类旨在实现血糖控制在一定范围内的控制算法的功能和结构,这类算法通过防止血糖剧烈波动,在预定义的目标范围内优化胰岛素治疗以控制血糖。

方法

本文的主要贡献是定义了一种用于血糖控制在一定范围内的模块化架构。重点在于系统规范而非算法实现。关键的系统架构元素是两个相互作用的模块:范围校正模块,其评估早期高血糖或低血糖的风险并相应调整胰岛素输注速率;以及安全监督模块,其评估低血糖风险并在必要时减少或停止胰岛素输送。范围校正模块的新颖工程概念是算法动作相对于名义开环策略——一种在名义条件下被认为是最优的基础输注速率和大剂量胰岛素的预定义组合。

结果

通过在计算机上对患者用例进行测试的原型实现,展示了我们的血糖控制在一定范围内策略可行性的概念验证。这些功能和架构上的区别提供了几个优点,包括:(i)仅在检测到相关风险时才进行显著的胰岛素输送校正;(ii)避免了积分作用的缺点,例如因低血糖风险导致的血糖过低;(iii)一个简单的线性模型就足够了,复杂的算法约束被安全监督所取代;(iv)名义曲线为每个患者提供了直接的个性化方案。

结论

我们认为,模块化的血糖控制在一定范围内系统是糖尿病闭环控制的增量开发、监管批准、工业部署和临床接受的最佳方法。

相似文献

1
Control to range for diabetes: functionality and modular architecture.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1058-65. doi: 10.1177/193229680900300509.
3
Run-to-run tuning of model predictive control for type 1 diabetes subjects: in silico trial.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1091-8. doi: 10.1177/193229680900300512.
4
A closed-loop artificial pancreas using model predictive control and a sliding meal size estimator.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1082-90. doi: 10.1177/193229680900300511.
6
A novel adaptive basal therapy based on the value and rate of change of blood glucose.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1099-108. doi: 10.1177/193229680900300513.
7
Automatic data processing to achieve a safe telemedical artificial pancreas.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1039-46. doi: 10.1177/193229680900300507.
8
An integrated multivariable artificial pancreas control system.
J Diabetes Sci Technol. 2014 May;8(3):498-507. doi: 10.1177/1932296814524862. Epub 2014 Apr 7.

引用本文的文献

2
Current Status and Emerging Options for Automated Insulin Delivery Systems.
Diabetes Technol Ther. 2022 May;24(5):362-371. doi: 10.1089/dia.2021.0514. Epub 2022 Mar 14.
3
Initiating hybrid closed loop: A program evaluation of an educator-led Control-IQ follow-up at a large pediatric clinic.
Pediatr Diabetes. 2021 Jun;22(4):586-593. doi: 10.1111/pedi.13183. Epub 2021 Mar 16.
4
Automated closed-loop control of diabetes: the artificial pancreas.
Bioelectron Med. 2018 Nov 7;4:14. doi: 10.1186/s42234-018-0015-6. eCollection 2018.
6
A Clinical Guide to Advanced Diabetes Devices and Closed-Loop Systems Using the CARES Paradigm.
Diabetes Technol Ther. 2019 Aug;21(8):462-469. doi: 10.1089/dia.2019.0105. Epub 2019 May 29.
7
Successful At-Home Use of the Tandem Control-IQ Artificial Pancreas System in Young Children During a Randomized Controlled Trial.
Diabetes Technol Ther. 2019 Apr;21(4):159-169. doi: 10.1089/dia.2019.0011. Epub 2019 Mar 19.
8
Diabetes Technology: Monitoring, Analytics, and Optimal Control.
Cold Spring Harb Perspect Med. 2019 Jun 3;9(6):a034389. doi: 10.1101/cshperspect.a034389.
9
Ongoing Debate About Models for Artificial Pancreas Systems and In Silico Studies.
Diabetes Technol Ther. 2018 Mar;20(3):174-176. doi: 10.1089/dia.2018.0038.
10
Real-Time Detection of Infusion Site Failures in a Closed-Loop Artificial Pancreas.
J Diabetes Sci Technol. 2018 May;12(3):599-607. doi: 10.1177/1932296818755173. Epub 2018 Feb 1.

本文引用的文献

1
Run-to-run tuning of model predictive control for type 1 diabetes subjects: in silico trial.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1091-8. doi: 10.1177/193229680900300512.
5
Modular artificial beta-cell system: a prototype for clinical research.
J Diabetes Sci Technol. 2008 Sep;2(5):863-72. doi: 10.1177/193229680800200518.
6
Evaluating the efficacy of closed-loop glucose regulation via control-variability grid analysis.
J Diabetes Sci Technol. 2008 Jul;2(4):630-5. doi: 10.1177/193229680800200414.
7
Model predictive control of type 1 diabetes: an in silico trial.
J Diabetes Sci Technol. 2007 Nov;1(6):804-12. doi: 10.1177/193229680700100603.
8
Statistical tools to analyze continuous glucose monitor data.
Diabetes Technol Ther. 2009 Jun;11 Suppl 1(Suppl 1):S45-54. doi: 10.1089/dia.2008.0138.
9
In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes.
J Diabetes Sci Technol. 2009 Jan;3(1):44-55. doi: 10.1177/193229680900300106.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验