Kovatchev Boris P, Breton Marc, Man Chiara Dalla, Cobelli Claudio
University of Virginia, Charlottesville, Virginia 22908-4888, USA.
J Diabetes Sci Technol. 2009 Jan;3(1):44-55. doi: 10.1177/193229680900300106.
Arguably, a minimally invasive system using subcutaneous (s.c.) continuous glucose monitoring (CGM) and s.c. insulin delivery via insulin pump would be a most feasible step to closed-loop control in type 1 diabetes mellitus (T1DM). Consequently, diabetes technology is focusing on developing an artificial pancreas using control algorithms to link CGM with s.c. insulin delivery. The future development of the artificial pancreas will be greatly accelerated by employing mathematical modeling and computer simulation. Realistic computer simulation is capable of providing invaluable information about the safety and the limitations of closed-loop control algorithms, guiding clinical studies, and out-ruling ineffective control scenarios in a cost-effective manner. Thus computer simulation testing of closed-loop control algorithms is regarded as a prerequisite to clinical trials of the artificial pancreas. In this paper, we present a system for in silico testing of control algorithms that has three principal components: (1) a large cohort of n=300 simulated "subjects" (n=100 adults, 100 adolescents, and 100 children) based on real individuals' data and spanning the observed variability of key metabolic parameters in the general population of people with T1DM; (2) a simulator of CGM sensor errors representative of Freestyle Navigator™, Guardian RT, or Dexcom™ STS™, 7-day sensor; and (3) a simulator of discrete s.c. insulin delivery via OmniPod Insulin Management System or Deltec Cozmo(®) insulin pump. The system has been shown to represent adequate glucose fluctuations in T1DM observed during meal challenges, and has been accepted by the Food and Drug Administration as a substitute to animal trials in the preclinical testing of closed-loop control strategies.
可以说,一种使用皮下连续血糖监测(CGM)和通过胰岛素泵进行皮下胰岛素输注的微创系统,对于1型糖尿病(T1DM)的闭环控制而言将是最可行的一步。因此,糖尿病技术正专注于开发一种利用控制算法将CGM与皮下胰岛素输注相连接的人工胰腺。通过运用数学建模和计算机模拟,人工胰腺的未来发展将得到极大加速。逼真的计算机模拟能够提供关于闭环控制算法安全性和局限性的宝贵信息,指导临床研究,并以具有成本效益的方式排除无效的控制方案。因此,闭环控制算法的计算机模拟测试被视为人工胰腺临床试验的先决条件。在本文中,我们展示了一种用于控制算法计算机模拟测试的系统,该系统有三个主要组成部分:(1)基于真实个体数据的n = 300名模拟“受试者”的大型队列(100名成年人、100名青少年和100名儿童),涵盖T1DM普通人群中关键代谢参数的观察到的变异性;(2)代表Freestyle Navigator™、Guardian RT或Dexcom™ STS™ 7天传感器的CGM传感器误差模拟器;(3)通过OmniPod胰岛素管理系统或Deltec Cozmo(®)胰岛素泵进行离散皮下胰岛素输注的模拟器。该系统已被证明能够呈现T1DM在进餐挑战期间观察到的适当血糖波动,并已被美国食品药品监督管理局接受,作为闭环控制策略临床前测试中动物试验的替代方法。