Hernando M Elena, García-Sáez Gema, Martínez-Sarriegui Iñaki, Rodríguez-Herrero Agustín, Pérez-Gandía Carmen, Rigla Mercedes, de Leiva Alberto, Capel Ismael, Pons Belén, Gómez Enrique J
Bioengineering and Telemedicine Group, Polytechnic University of Madrid, Madrid, Spain.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1039-46. doi: 10.1177/193229680900300507.
The use of telemedicine for diabetes care has evolved over time, proving that it contributes to patient self-monitoring, improves glycemic control, and provides analysis tools for decision support. The timely development of a safe and robust ambulatory artificial pancreas should rely on a telemedicine architecture complemented with automatic data analysis tools able to manage all the possible high-risk situations and to guarantee the patient's safety.
The Intelligent Control Assistant system (INCA) telemedical artificial pancreas architecture is based on a mobile personal assistant integrated into a telemedicine system. The INCA supports four control strategies and implements an automatic data processing system for risk management (ADP-RM) providing short-term and medium-term risk analyses. The system validation comprises data from 10 type 1 pump-treated diabetic patients who participated in two randomized crossover studies, and it also includes in silico simulation and retrospective data analysis.
The ADP-RM short-term risk analysis prevents hypoglycemic events by interrupting insulin infusion. The pump interruption has been implemented in silico and tested for a closed-loop simulation over 30 hours. For medium-term risk management, analysis of capillary blood glucose notified the physician with a total of 62 alarms during a clinical experiment (56% for hyperglycemic events). The ADP-RM system is able to filter anomalous continuous glucose records and to detect abnormal administration of insulin doses with the pump.
Automatic data analysis procedures have been tested as an essential tool to achieve a safe ambulatory telemedical artificial pancreas, showing their ability to manage short-term and medium-term risk situations.
远程医疗在糖尿病护理中的应用随着时间不断发展,已证明其有助于患者自我监测、改善血糖控制,并提供决策支持分析工具。安全且强大的门诊人工胰腺的适时开发应依赖于一个辅以自动数据分析工具的远程医疗架构,该工具能够管理所有可能的高风险情况并确保患者安全。
智能控制辅助系统(INCA)远程医疗人工胰腺架构基于集成到远程医疗系统中的移动个人助手。INCA支持四种控制策略,并实施了用于风险管理的自动数据处理系统(ADP-RM),提供短期和中期风险分析。系统验证包括来自10名接受胰岛素泵治疗的1型糖尿病患者的数据,这些患者参与了两项随机交叉研究,还包括计算机模拟和回顾性数据分析。
ADP-RM短期风险分析通过中断胰岛素输注来预防低血糖事件。泵中断已在计算机上实现,并在30小时的闭环模拟中进行了测试。对于中期风险管理,在一项临床实验中,毛细血管血糖分析共向医生发出62次警报(高血糖事件占56%)。ADP-RM系统能够过滤异常的连续血糖记录,并检测胰岛素泵胰岛素剂量的异常给药情况。
自动数据分析程序已作为实现安全的门诊远程医疗人工胰腺的重要工具进行了测试,显示出其管理短期和中期风险情况的能力。