Suppr超能文献

一种采用模型预测控制和滑动进餐量估计器的闭环人工胰腺。

A closed-loop artificial pancreas using model predictive control and a sliding meal size estimator.

作者信息

Lee Hyunjin, Buckingham Bruce A, Wilson Darrell M, Bequette B Wayne

机构信息

Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA.

出版信息

J Diabetes Sci Technol. 2009 Sep 1;3(5):1082-90. doi: 10.1177/193229680900300511.

Abstract

The objective of this article is to present a comprehensive strategy for a closed-loop artificial pancreas. A meal detection and meal size estimation algorithm is developed for situations in which the subject forgets to provide a meal insulin bolus. A pharmacodynamic model of insulin action is used to provide insulin-on-board constraints to explicitly include the future effect of past and currently delivered insulin boluses. In addition, a supervisory pump shut-off feature is presented to avoid hypoglycemia. All of these components are used in conjunction with a feedback control algorithm using model predictive control (MPC). A model for MPC is developed based on a study of 20 subjects and is tested in a hypothetical clinical trial of 100 adolescent and 100 adult subjects using a Food and Drug Administration-approved diabetic subject simulator. In addition, a performance comparison of previously and newly proposed meal size estimation algorithms using 200 in silico subjects is presented. Using the new meal size estimation algorithm, the integrated artificial pancreas system yielded a daily mean glucose of 138 and 132 mg/dl for adolescents and adults, respectively, which is a substantial improvement over the MPC-only case, which yielded 159 and 145 mg/dl.

摘要

本文的目的是提出一种用于闭环人工胰腺的综合策略。针对受试者忘记注射餐时胰岛素的情况,开发了一种进餐检测和进餐量估计算法。胰岛素作用的药效学模型用于提供胰岛素储备约束,以明确纳入过去和当前注射的胰岛素推注的未来影响。此外,还提出了一种监督泵关闭功能以避免低血糖。所有这些组件都与使用模型预测控制(MPC)的反馈控制算法结合使用。基于对20名受试者的研究开发了MPC模型,并使用美国食品药品监督管理局批准的糖尿病受试者模拟器在100名青少年和100名成人受试者的假设临床试验中进行了测试。此外,还给出了使用200个虚拟受试者对先前和新提出的进餐量估计算法的性能比较。使用新的进餐量估计算法,集成人工胰腺系统在青少年和成人中的每日平均血糖分别为138和132 mg/dl,与仅使用MPC时的159和145 mg/dl相比有了显著改善。

相似文献

1
A closed-loop artificial pancreas using model predictive control and a sliding meal size estimator.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1082-90. doi: 10.1177/193229680900300511.
4
Run-to-run tuning of model predictive control for type 1 diabetes subjects: in silico trial.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1091-8. doi: 10.1177/193229680900300512.
5
Control to range for diabetes: functionality and modular architecture.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1058-65. doi: 10.1177/193229680900300509.
7
A novel adaptive basal therapy based on the value and rate of change of blood glucose.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1099-108. doi: 10.1177/193229680900300513.
8
Zone model predictive control: a strategy to minimize hyper- and hypoglycemic events.
J Diabetes Sci Technol. 2010 Jul 1;4(4):961-75. doi: 10.1177/193229681000400428.
9
Automatic data processing to achieve a safe telemedical artificial pancreas.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1039-46. doi: 10.1177/193229680900300507.
10
Glucose clamp algorithms and insulin time-action profiles.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1005-13. doi: 10.1177/193229680900300503.

引用本文的文献

1
Metabolic Models, in Silico Trials, and Algorithms.
J Diabetes Sci Technol. 2025 Jul;19(4):895-907. doi: 10.1177/19322968251338300. Epub 2025 Jul 1.
3
Mealtime prediction using wearable insulin pump data to support diabetes management.
Sci Rep. 2024 Sep 9;14(1):21013. doi: 10.1038/s41598-024-71630-w.
4
Data-driven meal events detection using blood glucose response patterns.
BMC Med Inform Decis Mak. 2023 Dec 8;23(1):282. doi: 10.1186/s12911-023-02380-4.
5
Synthetic biomedical data generation in support of Clinical Trials.
Front Big Data. 2023 Aug 15;6:1085571. doi: 10.3389/fdata.2023.1085571. eCollection 2023.
6
In-silico evaluation of an artificial pancreas achieving automatic glycemic control in patients with type 1 diabetes.
Front Endocrinol (Lausanne). 2023 Jan 30;14:1115436. doi: 10.3389/fendo.2023.1115436. eCollection 2023.
7
Adaptive Personalized Prior-Knowledge-Informed Model Predictive Control for Type 1 Diabetes.
Control Eng Pract. 2023 Feb;131. doi: 10.1016/j.conengprac.2022.105386. Epub 2022 Nov 25.
8
An overview of advancements in closed-loop artificial pancreas system.
Heliyon. 2022 Nov 14;8(11):e11648. doi: 10.1016/j.heliyon.2022.e11648. eCollection 2022 Nov.
9
Incorporating Prior Information in Adaptive Model Predictive Control for Multivariable Artificial Pancreas Systems.
J Diabetes Sci Technol. 2022 Jan;16(1):19-28. doi: 10.1177/19322968211059149. Epub 2021 Dec 3.
10
Fault Tolerant Strategies for Automated Insulin Delivery Considering the Human Component: Current and Future Perspectives.
J Diabetes Sci Technol. 2021 Nov;15(6):1224-1231. doi: 10.1177/19322968211029297. Epub 2021 Jul 21.

本文引用的文献

1
In silico preclinical trials: methodology and engineering guide to closed-loop control in type 1 diabetes mellitus.
J Diabetes Sci Technol. 2009 Mar 1;3(2):269-82. doi: 10.1177/193229680900300207.
4
Model predictive control of type 1 diabetes: an in silico trial.
J Diabetes Sci Technol. 2007 Nov;1(6):804-12. doi: 10.1177/193229680700100603.
5
In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes.
J Diabetes Sci Technol. 2009 Jan;3(1):44-55. doi: 10.1177/193229680900300106.
6
Bolus calculator: a review of four "smart" insulin pumps.
Diabetes Technol Ther. 2008 Dec;10(6):441-4. doi: 10.1089/dia.2007.0284.
8
Detection of a meal using continuous glucose monitoring: implications for an artificial beta-cell.
Diabetes Care. 2008 Feb;31(2):295-300. doi: 10.2337/dc07-1293. Epub 2007 Oct 31.
9
Continuous glucose monitoring and closed-loop systems.
Diabet Med. 2006 Jan;23(1):1-12. doi: 10.1111/j.1464-5491.2005.01672.x.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验