Lee Hyunjin, Buckingham Bruce A, Wilson Darrell M, Bequette B Wayne
Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1082-90. doi: 10.1177/193229680900300511.
The objective of this article is to present a comprehensive strategy for a closed-loop artificial pancreas. A meal detection and meal size estimation algorithm is developed for situations in which the subject forgets to provide a meal insulin bolus. A pharmacodynamic model of insulin action is used to provide insulin-on-board constraints to explicitly include the future effect of past and currently delivered insulin boluses. In addition, a supervisory pump shut-off feature is presented to avoid hypoglycemia. All of these components are used in conjunction with a feedback control algorithm using model predictive control (MPC). A model for MPC is developed based on a study of 20 subjects and is tested in a hypothetical clinical trial of 100 adolescent and 100 adult subjects using a Food and Drug Administration-approved diabetic subject simulator. In addition, a performance comparison of previously and newly proposed meal size estimation algorithms using 200 in silico subjects is presented. Using the new meal size estimation algorithm, the integrated artificial pancreas system yielded a daily mean glucose of 138 and 132 mg/dl for adolescents and adults, respectively, which is a substantial improvement over the MPC-only case, which yielded 159 and 145 mg/dl.
本文的目的是提出一种用于闭环人工胰腺的综合策略。针对受试者忘记注射餐时胰岛素的情况,开发了一种进餐检测和进餐量估计算法。胰岛素作用的药效学模型用于提供胰岛素储备约束,以明确纳入过去和当前注射的胰岛素推注的未来影响。此外,还提出了一种监督泵关闭功能以避免低血糖。所有这些组件都与使用模型预测控制(MPC)的反馈控制算法结合使用。基于对20名受试者的研究开发了MPC模型,并使用美国食品药品监督管理局批准的糖尿病受试者模拟器在100名青少年和100名成人受试者的假设临床试验中进行了测试。此外,还给出了使用200个虚拟受试者对先前和新提出的进餐量估计算法的性能比较。使用新的进餐量估计算法,集成人工胰腺系统在青少年和成人中的每日平均血糖分别为138和132 mg/dl,与仅使用MPC时的159和145 mg/dl相比有了显著改善。