Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
Phys Chem Chem Phys. 2009 Dec 7;11(45):10701-11. doi: 10.1039/b911169g. Epub 2009 Sep 24.
We present an extensive molecular dynamics study (0.6 micros in total) on three A-RNA duplexes. The dependence of the A-RNA geometry on force fields (Parm99 and Parmbsc0) and salt strength conditions (approximately 0.18 M net-neutralizing Na(+) and approximately 0.3 M KCl) was investigated. The Parmbsc0 force field makes the A-RNA duplex more compact in comparison to the Parm99 by preventing temporary alpha/gamma t/t flips common in Parm99 simulations. Nevertheless, since the alpha/gamma t/t sub-state occurs to certain extent in experimental A-RNA structures, we consider both force fields as viable. The stabilization of the A-RNA helices caused by the Parmbsc0 force field includes visible reduction of the major groove width, increase of the base pair roll, larger helical inclination and small increases of twist. Therefore, the Parmbsc0 shifts the simulated duplexes more deeply into the A-form. Further narrowing of the deep major groove is observed in excess salt simulations, again accompanied by larger roll, inclination and twist. The cumulative difference between Parm99/lower-salt and Parmbsc0/higher-salt simulations is approximately 4-8 A for the average PP distances, and -0.7 to -2.5 degrees, -2.0 to -5.4 degrees, -2.6 to -8.6 degrees and 1.7 to 7.0 degrees for the twist, roll, inclination and propeller, respectively. The effects of the force field and salt condition are sequence-dependent. Thus, the compactness of A-RNA is sensitive to the sequence and the salt strength which may, for example, modulate the end-to-end distance of the A-RNA helix. The simulations neatly reproduce the known base pair roll re-distribution in alternating purine-pyrimidine A-RNA helices.
我们对三个 A-RNA 双链进行了广泛的分子动力学研究(总计 0.6 微秒)。研究了 A-RNA 几何形状对力场( Parm99 和 Parmbsc0)和盐强度条件(约 0.18 M 净中和 Na(+)和约 0.3 M KCl)的依赖性。与 Parm99 相比,Parmbsc0 力场通过阻止 Parm99 模拟中常见的临时 alpha/gamma t/t 翻转,使 A-RNA 双链更加紧凑。然而,由于 alpha/gamma t/t 亚态在某些程度上存在于实验 A-RNA 结构中,因此我们认为这两种力场都是可行的。 Parmbsc0 力场稳定 A-RNA 螺旋的作用包括明显减小大沟宽度、增加碱基对滚转、更大的螺旋倾斜和较小的扭转增加。因此,Parmbsc0 将模拟的双链更深入地推向 A 型。在过量盐模拟中,进一步观察到大沟深度变窄,同时滚转、倾斜和扭转也更大。Parm99/低盐和 Parmbsc0/高盐模拟之间的累积差异约为平均 PP 距离的 4-8A,扭转、滚转、倾斜和推进的差异分别为-0.7 至-2.5 度、-2.0 至-5.4 度、-2.6 至-8.6 度和 1.7 至 7.0 度。力场和盐条件的影响与序列有关。因此,A-RNA 的紧凑性对序列和盐强度敏感,这可能例如调节 A-RNA 螺旋的末端到末端距离。模拟很好地再现了已知的碱基对滚转在交替嘌呤-嘧啶 A-RNA 螺旋中的重新分布。