Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
J Phys Chem B. 2012 Aug 23;116(33):9899-916. doi: 10.1021/jp3014817. Epub 2012 Aug 9.
We have carried out an extended reference set of explicit solvent molecular dynamics simulations (63 simulations with 8.4 μs of simulation data) of canonical A-RNA duplexes. Most of the simulations were done using the latest variant of the Cornell et al. AMBER RNA force field bsc0χ(OL3), while several other RNA force fields have been tested. The calculations show that the A-RNA helix compactness, described mainly by geometrical parameters inclination, base pair roll, and helical rise, is sequence-dependent. In the calculated set of structures, the inclination varies from 10° to 24°. On the basis of simulations with modified bases (inosine and 2,6-diaminopurine), we suggest that the sequence-dependence of purely canonical A-RNA double helix is caused by the steric shape of the base pairs, i.e., the van der Waals interactions. The electrostatic part of stacking does not appear to affect the A-RNA shape. Especially visible is the role of the minor groove amino group of purines. This resembles the so-called Dickerson-Calladine mechanical rules suggested three decades ago for the DNA double helices. We did not identify any long-living backbone substate in A-RNA double helices that would resemble, for example, the B-DNA BI/BII dynamics. The variability of the A-RNA compactness is due to mutual movements of the consecutive base pairs coupled with modest change of the glycosidic χ torsion. The simulations further show that the A-RNA compactness is modestly affected by the water model used, while the effect of ionic conditions, investigated in the range from net-neutral condition to ~0.8 M monovalent ion excess salt, is smaller.
我们对经典 A-RNA 双链进行了广泛的溶剂化分子动力学模拟(共 63 个模拟,模拟数据为 8.4 μs)。大多数模拟使用的是 Cornell 等人的最新 AMBER RNA 力场 bsc0χ(OL3)变体,同时也测试了其他几种 RNA 力场。计算表明,A-RNA 螺旋的紧凑性主要由几何参数倾斜度、碱基对滚转角和螺旋上升高度来描述,是序列依赖性的。在所计算的结构中,倾斜度从 10°到 24°不等。基于对修饰碱基(肌苷和 2,6-二氨基嘌呤)的模拟,我们提出,纯经典 A-RNA 双链的序列依赖性是由碱基对的空间形状引起的,即范德华相互作用。堆积的静电部分似乎不会影响 A-RNA 的形状。嘌呤的小沟氨基特别明显。这类似于三十年前提出的 DNA 双链的所谓 Dickerson-Calladine 机械规则。我们没有在 A-RNA 双链中发现任何类似于 B-DNA BI/BII 动力学的长寿命骨架亚基。A-RNA 紧凑性的可变性是由于相邻碱基对的相互运动以及糖苷 χ 扭转的适度变化引起的。模拟进一步表明,A-RNA 的紧凑性受到所使用的水模型的适度影响,而离子条件的影响(在净中性条件到~0.8 M 单价离子过剩盐的范围内进行了研究)则较小。