Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacký University , tř. 17 listopadu 12 , 771 46 , Olomouc , Czech Republic.
Department of Physical Chemistry, Faculty of Science , Palacký University , tř. 17 listopadu 12 , 771 46 , Olomouc , Czech Republic.
J Chem Theory Comput. 2019 May 14;15(5):3288-3305. doi: 10.1021/acs.jctc.8b00955. Epub 2019 Apr 2.
Molecular dynamics (MD) simulations became a leading tool for investigation of structural dynamics of nucleic acids. Despite recent efforts to improve the empirical potentials (force fields, ffs), RNA ffs have persisting deficiencies, which hamper their utilization in quantitatively accurate simulations. Previous studies have shown that at least two salient problems contribute to difficulties in the description of free-energy landscapes of small RNA motifs: (i) excessive stabilization of the unfolded single-stranded RNA ensemble by intramolecular base-phosphate and sugar-phosphate interactions and (ii) destabilization of the native folded state by underestimation of stability of base pairing. Here, we introduce a general ff term (gHBfix) that can selectively fine-tune nonbonding interaction terms in RNA ffs, in particular, the H bonds. The gHBfix potential affects the pairwise interactions between all possible pairs of the specific atom types, while all other interactions remain intact; i.e., it is not a structure-based model. In order to probe the ability of the gHBfix potential to refine the ff nonbonded terms, we performed an extensive set of folding simulations of RNA tetranucleotides and tetraloops. On the basis of these data, we propose particular gHBfix parameters to modify the AMBER RNA ff. The suggested parametrization significantly improves the agreement between experimental data and the simulation conformational ensembles, although our current ff version still remains far from being flawless. While attempts to tune the RNA ffs by conventional reparametrizations of dihedral potentials or nonbonded terms can lead to major undesired side effects, as we demonstrate for some recently published ffs, gHBfix has a clear promising potential to improve the ff performance while avoiding introduction of major new imbalances.
分子动力学(MD)模拟已成为研究核酸结构动力学的主要工具。尽管最近努力改进经验势(力场,ff),但 RNA ff 仍存在持续的缺陷,这阻碍了它们在定量准确模拟中的应用。先前的研究表明,至少有两个突出的问题导致难以描述小 RNA 基序的自由能景观:(i)分子内碱基-磷酸和糖-磷酸相互作用过度稳定了展开的单链 RNA 整体,以及(ii)低估碱基配对稳定性导致天然折叠状态不稳定。在这里,我们引入了一种通用 ff 项(gHBfix),可以选择性地微调 RNA ff 中的非键相互作用项,特别是氢键。gHBfix 势能影响所有特定原子类型的所有可能对之间的成对相互作用,而所有其他相互作用保持不变;即,它不是基于结构的模型。为了探究 gHBfix 势能精细调整 ff 非键项的能力,我们对 RNA 四核苷酸和四环进行了广泛的折叠模拟。基于这些数据,我们提出了特定的 gHBfix 参数来修改 AMBER RNA ff。所提出的参数化显著提高了实验数据和模拟构象整体之间的一致性,尽管我们当前的 ff 版本仍然存在很大的缺陷。虽然尝试通过传统的二面角势或非键项的重新参数化来调整 RNA ff 可能会导致主要的不良副作用,正如我们为一些最近发布的 ff 所证明的那样,gHBfix 具有明显的改进 ff 性能的潜力,同时避免引入主要的新失衡。