Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, 65 Landsdowne Street, Fourth Floor, Cambridge, Massachusetts 02139, USA.
Biochemistry. 2010 Mar 9;49(9):2008-17. doi: 10.1021/bi901851y.
Recent studies have identified mutations in the leucine-rich repeat kinase2 gene (LRRK2) in the most common familial forms and some sporadic forms of Parkinson's disease (PD). LRRK2 is a large and complex protein that possesses kinase and GTPase activities. Some LRRK2 mutants enhance kinase activity and possibly contribute to PD through a toxic gain-of-function mechanism. Given the role of LRRK2 in the pathogenesis of PD, understanding the kinetic mechanism of its two enzymatic properties is critical for the discovery of inhibitors of LRRK2 kinase that would be therapeutically useful in treating PD. In this report, by using LRRK2 protein purified from murine brain, first we characterize kinetic mechanisms for the LRRK2-catalyzed phosphorylation of two peptide substrates: PLK-derived peptide (PLK-peptide) and LRRKtide. We found that LRRK2 follows a rapid equilibrium random mechanism for the phosphorylation of PLK-peptide with either ATP or PLK-peptide being the first substrate binding to the enzyme, as evidenced by initial velocity and inhibition mechanism studies with nucleotide analogues AMP and AMP-PNP, product ADP, and an analogue of the peptide substrate. The binding of the first substrate has no effect on the binding affinity of the second substrate. Identical mechanistic conclusions were drawn when LRRKtide was the phosphoryl acceptor. Next, we characterize the GTPase activity of LRRK2 with a k(cat) of 0.2 +/- 0.02 s(-1) and a K(m) of 210 +/- 29 microM. A SKIE of 0.97 +/- 0.04 was measured on k(cat) for the GTPase activity of LRRK2 in a D(2)O molar fraction of 0.86 and suggested that the product dissociation step is rate-limiting, of the steps governed by k(cat) in the LRRK2-catalyzed GTP hydrolysis. Surprisingly, binding of GTP, GDP, or GMP has no effect on kinase activity, although GMP and GDP inhibit the GTPase activity. Finally, we have identified compound LDN-73794 through screen of LRRK2 kinase inhibitors. Our study revealed that this compound is a competitive inhibitor of the binding of ATP and inhibits the kinase activity without affecting the GTPase activity.
最近的研究已经确定了富亮氨酸重复激酶 2 基因(LRRK2)中的突变,这些突变存在于最常见的家族性形式和一些散发性形式的帕金森病(PD)中。LRRK2 是一种大型且复杂的蛋白质,具有激酶和 GTP 酶活性。一些 LRRK2 突变体增强了激酶活性,并可能通过毒性获得功能机制导致 PD。鉴于 LRRK2 在 PD 发病机制中的作用,了解其两种酶性质的动力学机制对于发现具有治疗 PD 潜力的 LRRK2 激酶抑制剂至关重要。在本报告中,我们使用从小鼠脑中纯化的 LRRK2 蛋白,首先对 LRRK2 催化的两种肽底物磷酸化的动力学机制进行了表征:PLK 衍生肽(PLK-肽)和 LRRKtide。我们发现,LRRK2 以快速平衡随机机制催化 PLK-肽的磷酸化,无论是 ATP 还是 PLK-肽,都是酶首先结合的底物,这一点可以通过核苷酸类似物 AMP 和 AMP-PNP、产物 ADP 以及肽底物类似物的初始速度和抑制机制研究来证明。第一个底物的结合对第二个底物的结合亲和力没有影响。当 LRRKtide 是磷酸化受体时,得出了相同的机制结论。接下来,我们用 0.2 +/- 0.02 s(-1) 的 k(cat)和 210 +/- 29 microM 的 K(m)来表征 LRRK2 的 GTP 酶活性。在 D(2)O 摩尔分数为 0.86 的情况下,测量 LRRK2 GTP 酶活性的 SKIE 为 0.97 +/- 0.04,表明产物解离步骤是限速步骤,由 k(cat)控制在 LRRK2 催化的 GTP 水解中。令人惊讶的是,尽管 GMP 和 GDP 抑制 GTP 酶活性,但 GTP、GDP 或 GMP 的结合对激酶活性没有影响。最后,我们通过筛选 LRRK2 激酶抑制剂,发现了化合物 LDN-73794。我们的研究表明,该化合物是 ATP 结合的竞争性抑制剂,可抑制激酶活性,而不影响 GTP 酶活性。