Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
J Mol Biol. 2011 Sep 9;412(1):94-110. doi: 10.1016/j.jmb.2011.07.033. Epub 2011 Jul 22.
The leucine-rich repeat kinase 2 (LRRK2) protein has both guanosine triphosphatase (GTPase) and kinase activities, and mutation in either enzymatic domain can cause late-onset Parkinson disease. Nucleotide binding in the GTPase domain may be required for kinase activity, and residues in the GTPase domain are potential sites for autophosphorylation, suggesting a complex mechanism of intrinsic regulation. To further define the effects of LRRK2 autophosphorylation, we applied a technique optimal for detection of protein phosphorylation, electron transfer dissociation, and identified autophosphorylation events exclusively nearby the nucleotide binding pocket in the GTPase domain. Parkinson-disease-linked mutations alter kinase activity but did not alter autophosphorylation site specificity or sites of phosphorylation in a robust in vitro substrate myelin basic protein. Amino acid substitutions in the GTPase domain have large effects on kinase activity, as insertion of the GTPase-associated R1441C pathogenic mutation together with the G2019S kinase domain mutation resulted in a multiplicative increase (∼7-fold) in activity. Removal of a conserved autophosphorylation site (T1503) by mutation to an alanine residue resulted in greatly decreased GTP-binding and kinase activities. While autophosphorylation likely serves to potentiate kinase activity, we find that oligomerization and loss of the active dimer species occur in an ATP- and autophosphorylation-independent manner. LRRK2 autophosphorylation sites are overall robustly protected from dephosphorylation in vitro, suggesting tight control over activity in vivo. We developed highly specific antibodies targeting pT1503 but failed to detect endogenous autophosphorylation in protein derived from transgenic mice and cell lines. LRRK2 activity in vivo is unlikely to be constitutive but rather refined to specific responses.
富含亮氨酸重复激酶 2(LRRK2)蛋白具有鸟苷三磷酸酶(GTPase)和激酶活性,其酶结构域的突变可导致迟发性帕金森病。GTPase 结构域中的核苷酸结合可能是激酶活性所必需的,并且 GTPase 结构域中的残基是自身磷酸化的潜在位点,这表明存在复杂的内在调节机制。为了进一步确定 LRRK2 自身磷酸化的作用,我们应用了一种最适合检测蛋白质磷酸化的技术,即电子转移解离,并在 GTPase 结构域的核苷酸结合口袋附近发现了仅有的自身磷酸化事件。与帕金森病相关的突变改变了激酶活性,但在体外强底物髓鞘碱性蛋白中并未改变自身磷酸化位点特异性或磷酸化位点。GTPase 结构域中的氨基酸取代对激酶活性有很大影响,因为插入 GTPase 相关的 R1441C 致病性突变与 G2019S 激酶结构域突变一起导致活性增加了约 7 倍。通过突变将保守的自身磷酸化位点(T1503)突变为丙氨酸残基,导致 GTP 结合和激酶活性大大降低。虽然自身磷酸化可能增强激酶活性,但我们发现寡聚化和活性二聚体物种的丢失以 ATP 和自身磷酸化独立的方式发生。LRRK2 自身磷酸化位点在体外总体上受到强烈保护而不会去磷酸化,这表明在体内对活性的控制很严格。我们开发了针对 pT1503 的高度特异性抗体,但未能在来自转基因小鼠和细胞系的蛋白质中检测到内源性自身磷酸化。LRRK2 活性在体内不太可能是组成型的,而是针对特定的反应进行精细化调节。