Suppr超能文献

非傅里叶图像特征的皮质下表示。

Subcortical representation of non-Fourier image features.

机构信息

Committee on Computational Neuroscience and Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, USA.

出版信息

J Neurosci. 2010 Feb 10;30(6):1985-93. doi: 10.1523/JNEUROSCI.3258-09.2010.

Abstract

A fundamental goal of visual neuroscience is to identify the neural pathways representing different image features. It is widely argued that the early stages of these pathways represent linear features of the visual scene and that the nonlinearities necessary to represent complex visual patterns are introduced later in cortex. We tested this by comparing the responses of subcortical and cortical neurons to interference patterns constructed by summing sinusoidal gratings. Although a linear mechanism can detect the component gratings, a nonlinear mechanism is required to detect an interference pattern resulting from their sum. Consistent with in vitro retinal ganglion cell recordings, we found that interference patterns are represented subcortically by cat LGN Y-cells, but not X-cells. Linear and nonlinear tuning properties of LGN Y-cells were then characterized and compared quantitatively with those of cortical area 18 neurons responsive to interference patterns. This comparison revealed a high degree of similarity between the two neural populations, including the following: (1) the representation of similar spatial frequencies in both their linear and nonlinear responses, (2) comparable orientation selectivity for the high spatial frequency carrier of interference patterns, and (3) the same difference in their temporal frequency selectivity for drifting gratings versus the envelope of interference patterns. The present findings demonstrate that the nonlinear subcortical Y-cell pathway represents complex visual patterns and likely underlies cortical responses to interference patterns. We suggest that linear and nonlinear mechanisms important for encoding visual scenes emerge in parallel through distinct pathways originating at the retina.

摘要

视觉神经科学的一个基本目标是确定表示不同图像特征的神经通路。人们普遍认为,这些通路的早期阶段代表了视觉场景的线性特征,而代表复杂视觉模式所需的非线性特征则是在皮质中引入的。我们通过比较皮层下和皮层神经元对由正弦光栅叠加而成的干扰图案的反应来检验这一点。虽然线性机制可以检测到组成光栅,但需要非线性机制来检测它们的总和产生的干扰图案。与体外视网膜神经节细胞记录一致,我们发现,猫外侧膝状体 Y 细胞在皮层下表示干扰图案,但 X 细胞不表示。然后对 LGN Y 细胞的线性和非线性调谐特性进行了表征,并与对干扰图案有反应的皮层 18 区神经元进行了定量比较。这种比较揭示了这两个神经群体之间存在高度的相似性,包括以下几点:(1)在它们的线性和非线性反应中表示相似的空间频率,(2)对干扰图案的高空间频率载波的可比较的方向选择性,以及(3)它们对运动光栅的时间频率选择性与干扰图案包络的差异相同。本研究结果表明,非线性皮层下 Y 细胞通路表示复杂的视觉模式,可能是皮质对干扰模式反应的基础。我们认为,对于编码视觉场景很重要的线性和非线性机制是通过起源于视网膜的不同通路平行出现的。

相似文献

1
Subcortical representation of non-Fourier image features.
J Neurosci. 2010 Feb 10;30(6):1985-93. doi: 10.1523/JNEUROSCI.3258-09.2010.
2
Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat.
J Neurophysiol. 1987 Aug;58(2):267-75. doi: 10.1152/jn.1987.58.2.267.
5
Are primate lateral geniculate nucleus (LGN) cells really sensitive to orientation or direction?
Vis Neurosci. 2002 Jan-Feb;19(1):97-108. doi: 10.1017/s0952523802191097.
6
Direction selectivity of synaptic potentials in simple cells of the cat visual cortex.
J Neurophysiol. 1997 Nov;78(5):2772-89. doi: 10.1152/jn.1997.78.5.2772.
7
Orientation bias of neurons in the lateral geniculate nucleus of macaque monkeys.
Vis Neurosci. 1990 Dec;5(6):525-45. doi: 10.1017/s0952523800000699.
9
The Y cell visual pathway implements a demodulating nonlinearity.
Neuron. 2011 Jul 28;71(2):348-61. doi: 10.1016/j.neuron.2011.05.044.
10
Surround suppression and temporal processing of visual signals.
J Neurophysiol. 2015 Apr 1;113(7):2605-17. doi: 10.1152/jn.00480.2014. Epub 2015 Feb 4.

引用本文的文献

1
Characterization of extracellular spike waveforms recorded in wallaby primary visual cortex.
Front Neurosci. 2023 Sep 8;17:1244952. doi: 10.3389/fnins.2023.1244952. eCollection 2023.
2
Behavioral signatures of Y-like neuronal responses in human vision.
Sci Rep. 2022 Nov 9;12(1):19116. doi: 10.1038/s41598-022-23293-8.
3
Differentiation of Theta Visual Motion from Fourier Motion Requires LC16 and R18C12 Neurons in Drosophila.
iScience. 2020 Apr 24;23(4):101041. doi: 10.1016/j.isci.2020.101041. Epub 2020 Apr 8.
5
Modeling second-order boundary perception: A machine learning approach.
PLoS Comput Biol. 2019 Mar 18;15(3):e1006829. doi: 10.1371/journal.pcbi.1006829. eCollection 2019 Mar.
7
Encoding and estimation of first- and second-order binocular disparity in natural images.
Vision Res. 2016 Mar;120:108-20. doi: 10.1016/j.visres.2015.10.016. Epub 2016 Jan 14.
8
Orientation-cue invariant population responses to contrast-modulated and phase-reversed contour stimuli in macaque V1 and V2.
PLoS One. 2014 Sep 4;9(9):e106753. doi: 10.1371/journal.pone.0106753. eCollection 2014.
9
Form-cue invariant second-order neuronal responses to contrast modulation in primate area V2.
J Neurosci. 2014 Sep 3;34(36):12081-92. doi: 10.1523/JNEUROSCI.0211-14.2014.
10
The visual representation of 3D object orientation in parietal cortex.
J Neurosci. 2013 Dec 4;33(49):19352-61. doi: 10.1523/JNEUROSCI.3174-13.2013.

本文引用的文献

1
The primate retina contains distinct types of Y-like ganglion cells.
J Neurosci. 2009 Apr 22;29(16):5048-50. doi: 10.1523/JNEUROSCI.0423-09.2009.
3
Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina.
J Neurosci. 2008 Oct 29;28(44):11277-91. doi: 10.1523/JNEUROSCI.2982-08.2008.
4
Flies see second-order motion.
Curr Biol. 2008 Jun 3;18(11):R464-5. doi: 10.1016/j.cub.2008.03.050.
5
Models and measurements of functional maps in V1.
J Neurophysiol. 2008 Jun;99(6):2745-54. doi: 10.1152/jn.90211.2008. Epub 2008 Apr 9.
6
Identification and characterization of a Y-like primate retinal ganglion cell type.
J Neurosci. 2007 Oct 10;27(41):11019-27. doi: 10.1523/JNEUROSCI.2836-07.2007.
7
The representation of complex images in spatial frequency domains of primary visual cortex.
J Neurosci. 2007 Aug 29;27(35):9310-8. doi: 10.1523/JNEUROSCI.0500-07.2007.
8
Neuronal response to texture- and contrast-defined boundaries in early visual cortex.
Vis Neurosci. 2007 Jan-Feb;24(1):65-77. doi: 10.1017/S0952523807070113.
9
Neural basis for stereopsis from second-order contrast cues.
J Neurosci. 2006 Apr 19;26(16):4370-82. doi: 10.1523/JNEUROSCI.4379-05.2006.
10
Boundary cue invariance in cortical orientation maps.
Cereb Cortex. 2006 Jun;16(6):896-906. doi: 10.1093/cercor/bhj033. Epub 2005 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验