Section of Neurobiology and Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712-0248, USA.
J Neurosci. 2010 Feb 10;30(6):2039-50. doi: 10.1523/JNEUROSCI.2385-09.2010.
Principal neurons of the medial superior olive (MSO) compute azimuthal sound location by integrating phase-locked inputs from each ear. While previous experimental and modeling studies have proposed that voltage-gated sodium channels (VGSCs) play an important role in synaptic integration in the MSO, these studies appear at odds with the unusually weak active backpropagation of action potentials into the soma and dendrites. To understand the spatial localization and biophysical properties of VGSCs, we isolated sodium currents in MSO principal neurons in gerbil brainstem slices. Nucleated and cell-attached patches revealed that VGSC density at the soma is comparable to that of many other neuron types, but channel expression is largely absent from the dendrites. Further, while somatic VGSCs activated with conventional voltage dependence (V(1/2) = -30 mV), they exhibited an unusually negative range of steady-state inactivation (V(1/2) = -77 mV), leaving approximately 92% of VGSCs inactivated at the resting potential (approximately -58 mV). In current-clamp experiments, non-inactivated VGSCs were sufficient to amplify subthreshold EPSPs near action potential threshold, counterbalancing the suppression of EPSP peaks by low voltage-activated potassium channels. EPSP amplification was restricted to the perisomatic region of the neuron, and relatively insensitive to preceding inhibition. Finally, computational modeling showed that the exclusion of VGSCs from the dendrites equalizes somatic EPSP amplification across synaptic locations and lowered the threshold for bilateral versus unilateral excitatory synaptic inputs. Together, these findings suggest that the pattern of sodium channel expression in MSO neurons contributes to these neurons' selectivity for coincident binaural inputs.
中内侧橄榄核(MSO)的主要神经元通过整合来自每只耳朵的锁相输入来计算方位声音位置。虽然之前的实验和建模研究表明,电压门控钠离子通道(VGSCs)在 MSO 的突触整合中发挥重要作用,但这些研究似乎与动作电位异常弱的主动反向传播到胞体和树突不一致。为了了解 VGSCs 的空间定位和生物物理特性,我们在沙鼠脑干切片中分离了 MSO 主要神经元中的钠离子电流。有核和细胞附着的斑片表明,胞体处的 VGSC 密度与许多其他神经元类型相当,但通道表达在很大程度上不存在于树突中。此外,虽然体细胞 VGSCs 以传统的电压依赖性方式激活(V(1/2)=-30 mV),但它们表现出异常负的稳态失活范围(V(1/2)=-77 mV),使得大约 92%的 VGSCs 在静息电位(约-58 mV)失活。在电流钳实验中,未失活的 VGSCs足以在动作电位阈值附近放大亚阈值 EPSP,抵消了低电压激活钾通道对 EPSP 峰值的抑制。EPSP 放大仅限于神经元的胞体区域,并且对先前的抑制相对不敏感。最后,计算建模表明,将 VGSCs 排除在树突之外,可使体细胞 EPSP 放大在突触位置之间均衡,并降低双侧与单侧兴奋性突触输入的阈值。总之,这些发现表明,MSO 神经元中钠离子通道表达的模式有助于这些神经元对共有的双耳输入的选择性。