Suppr超能文献

皮层机制对声音纹理的分离和表示。

Cortical mechanisms for the segregation and representation of acoustic textures.

机构信息

Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, United Kingdom.

出版信息

J Neurosci. 2010 Feb 10;30(6):2070-6. doi: 10.1523/JNEUROSCI.5378-09.2010.

Abstract

Auditory object analysis requires two fundamental perceptual processes: the definition of the boundaries between objects, and the abstraction and maintenance of an object's characteristic features. Although it is intuitive to assume that the detection of the discontinuities at an object's boundaries precedes the subsequent precise representation of the object, the specific underlying cortical mechanisms for segregating and representing auditory objects within the auditory scene are unknown. We investigated the cortical bases of these two processes for one type of auditory object, an "acoustic texture," composed of multiple frequency-modulated ramps. In these stimuli, we independently manipulated the statistical rules governing (1) the frequency-time space within individual textures (comprising ramps with a given spectrotemporal coherence) and (2) the boundaries between textures (adjacent textures with different spectrotemporal coherences). Using functional magnetic resonance imaging, we show mechanisms defining boundaries between textures with different coherences in primary and association auditory cortices, whereas texture coherence is represented only in association cortex. Furthermore, participants' superior detection of boundaries across which texture coherence increased (as opposed to decreased) was reflected in a greater neural response in auditory association cortex at these boundaries. The results suggest a hierarchical mechanism for processing acoustic textures that is relevant to auditory object analysis: boundaries between objects are first detected as a change in statistical rules over frequency-time space, before a representation that corresponds to the characteristics of the perceived object is formed.

摘要

听觉对象分析需要两个基本的感知过程

对象边界的定义,以及对象特征的抽象和保持。虽然人们直观地认为,在对象边界的不连续性被检测到之后,会随后对对象进行精确的表示,但在听觉场景中分离和表示听觉对象的具体皮质机制尚不清楚。我们研究了这两种过程的皮质基础,针对的是一种听觉对象,即由多个调频斜坡组成的“声纹理”。在这些刺激中,我们独立地操纵了以下两种规则:(1)单个纹理(由具有给定时频相干性的斜坡组成)内的时频空间;(2)纹理之间的边界(具有不同时频相干性的相邻纹理)。使用功能磁共振成像,我们在初级和联合听觉皮质中显示了定义具有不同相干性的纹理之间边界的机制,而纹理相干性仅在联合皮质中表示。此外,与纹理相干性降低的边界相比,参与者在纹理相干性增加的边界上更好地检测到边界,这反映在听觉联合皮质中这些边界处的神经反应更大。结果表明,处理声纹理的分层机制与听觉对象分析相关:对象之间的边界首先作为频率-时间空间上统计规则变化被检测到,然后才形成与感知对象特征相对应的表示。

相似文献

1
Cortical mechanisms for the segregation and representation of acoustic textures.
J Neurosci. 2010 Feb 10;30(6):2070-6. doi: 10.1523/JNEUROSCI.5378-09.2010.
2
Dynamics underlying auditory-object-boundary detection in primary auditory cortex.
Eur J Neurosci. 2021 Nov;54(9):7274-7288. doi: 10.1111/ejn.15471. Epub 2021 Oct 3.
3
Brain dynamics encode the spectrotemporal boundaries of auditory objects.
Hear Res. 2013 Oct;304:77-90. doi: 10.1016/j.heares.2013.06.009. Epub 2013 Jul 2.
4
Cortical Representations of Speech in a Multitalker Auditory Scene.
J Neurosci. 2017 Sep 20;37(38):9189-9196. doi: 10.1523/JNEUROSCI.0938-17.2017. Epub 2017 Aug 18.
5
Cortical processing of pitch: Model-based encoding and decoding of auditory fMRI responses to real-life sounds.
Neuroimage. 2018 Oct 15;180(Pt A):291-300. doi: 10.1016/j.neuroimage.2017.11.020. Epub 2017 Nov 13.
6
EEG signatures accompanying auditory figure-ground segregation.
Neuroimage. 2016 Nov 1;141:108-119. doi: 10.1016/j.neuroimage.2016.07.028. Epub 2016 Jul 12.
7
Finding the pitch of the missing fundamental in infants.
J Neurosci. 2009 Jun 17;29(24):7718-8822. doi: 10.1523/JNEUROSCI.0157-09.2009.
8
Echo-acoustic flow shapes object representation in spatially complex acoustic scenes.
J Neurophysiol. 2017 Jun 1;117(6):2113-2124. doi: 10.1152/jn.00860.2016. Epub 2017 Mar 8.

引用本文的文献

1
2
Modulation change detection in human auditory cortex: Evidence for asymmetric, non-linear edge detection.
Eur J Neurosci. 2020 Jul;52(2):2889-2904. doi: 10.1111/ejn.14707. Epub 2020 Mar 9.
3
Emergence of β and γ networks following multisensory training.
Neuroimage. 2020 Feb 1;206:116313. doi: 10.1016/j.neuroimage.2019.116313. Epub 2019 Oct 30.
4
Large-scale network dynamics of beta-band oscillations underlie auditory perceptual decision-making.
Netw Neurosci. 2017 Jun 1;1(2):166-191. doi: 10.1162/NETN_a_00009. eCollection 2017 Spring.
5
Evidence Integration in Natural Acoustic Textures during Active and Passive Listening.
eNeuro. 2018 Apr 13;5(2). doi: 10.1523/ENEURO.0090-18.2018. eCollection 2018 Mar-Apr.
6
Detecting changes in dynamic and complex acoustic environments.
Elife. 2017 Mar 6;6:e24910. doi: 10.7554/eLife.24910.
7
Core auditory processing deficits in primary progressive aphasia.
Brain. 2016 Jun;139(Pt 6):1817-29. doi: 10.1093/brain/aww067. Epub 2016 Apr 9.
8
Functional neuroanatomy of auditory scene analysis in Alzheimer's disease.
Neuroimage Clin. 2015 Feb 28;7:699-708. doi: 10.1016/j.nicl.2015.02.019. eCollection 2015.
9
Representations of specific acoustic patterns in the auditory cortex and hippocampus.
Proc Biol Sci. 2014 Sep 22;281(1791):20141000. doi: 10.1098/rspb.2014.1000.
10
NESSTI: norms for environmental sound stimuli.
PLoS One. 2013 Sep 4;8(9):e73382. doi: 10.1371/journal.pone.0073382. eCollection 2013.

本文引用的文献

1
Unraveling the principles of auditory cortical processing: can we learn from the visual system?
Nat Neurosci. 2009 Jun;12(6):698-701. doi: 10.1038/nn.2308. Epub 2009 May 26.
2
Encoding of spectral correlation over time in auditory cortex.
J Neurosci. 2008 Dec 3;28(49):13268-73. doi: 10.1523/JNEUROSCI.4596-08.2008.
3
Neurons and objects: the case of auditory cortex.
Front Neurosci. 2008 Jul 7;2(1):107-13. doi: 10.3389/neuro.01.009.2008. eCollection 2008 Jul.
4
Processing of complex sounds in the auditory system.
Curr Opin Neurobiol. 2008 Aug;18(4):413-7. doi: 10.1016/j.conb.2008.08.014. Epub 2008 Oct 7.
5
Auditory temporal edge detection in human auditory cortex.
Brain Res. 2008 Jun 5;1213:78-90. doi: 10.1016/j.brainres.2008.03.050. Epub 2008 Apr 8.
7
Processing asymmetry of transitions between order and disorder in human auditory cortex.
J Neurosci. 2007 May 9;27(19):5207-14. doi: 10.1523/JNEUROSCI.0318-07.2007.
9
Processing of dynamic spectral properties of sounds.
Int Rev Neurobiol. 2005;70:299-330. doi: 10.1016/S0074-7742(05)70009-X.
10
Speech-specific auditory processing: where is it?
Trends Cogn Sci. 2005 Jun;9(6):271-6. doi: 10.1016/j.tics.2005.03.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验