Suppr超能文献

On large margin hierarchical classification with multiple paths.

作者信息

Wang Junhui, Shen Xiaotong, Pan Wei

机构信息

Assistant Professor, Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607 (Email:

出版信息

J Am Stat Assoc. 2009 Sep 1;104(487):1213. doi: 10.1198/jasa.2009.tm08084.

Abstract

Hierarchical classification is critical to knowledge management and exploration, as in gene function prediction and document categorization. In hierarchical classification, an input is classified according to a structured hierarchy. In a situation as such, the central issue is how to effectively utilize the inter-class relationship to improve the generalization performance of flat classification ignoring such dependency. In this article, we propose a novel large margin method through constraints characterizing a multi-path hierarchy, where class membership can be non-exclusive. The proposed method permits a treatment of various losses for hierarchical classification. For implementation, we focus on the symmetric difference loss and two large margin classifiers: support vector machines and psi-learning. Finally, theoretical and numerical analyses are conducted, in addition to an application to gene function prediction. They suggest that the proposed method achieves the desired objective and outperforms strong competitors in the literature.

摘要

相似文献

1
On large margin hierarchical classification with multiple paths.
J Am Stat Assoc. 2009 Sep 1;104(487):1213. doi: 10.1198/jasa.2009.tm08084.
2
Multicategory Large-Margin Unified Machines.
J Mach Learn Res. 2013 May 1;14:1349-1386.
3
Mandatory leaf node prediction in hierarchical multilabel classification.
IEEE Trans Neural Netw Learn Syst. 2014 Dec;25(12):2275-87. doi: 10.1109/TNNLS.2014.2309437.
4
Hard or Soft Classification? Large-margin Unified Machines.
J Am Stat Assoc. 2011 Mar 1;106(493):166-177. doi: 10.1198/jasa.2011.tm10319.
5
New support vector-based design method for binary hierarchical classifiers for multi-class classification problems.
Neural Netw. 2008 Mar-Apr;21(2-3):502-10. doi: 10.1016/j.neunet.2007.12.005. Epub 2007 Dec 8.
6
Reduction strategies for hierarchical multi-label classification in protein function prediction.
BMC Bioinformatics. 2016 Sep 15;17(1):373. doi: 10.1186/s12859-016-1232-1.
7
Hierarchy-aware contrastive learning with late fusion for skin lesion classification.
Comput Methods Programs Biomed. 2022 Apr;216:106666. doi: 10.1016/j.cmpb.2022.106666. Epub 2022 Jan 26.
9
Robust Support Vector Machines for Classification with Nonconvex and Smooth Losses.
Neural Comput. 2016 Jun;28(6):1217-47. doi: 10.1162/NECO_a_00837. Epub 2016 May 3.
10
Learning Ordinal-Hierarchical Constraints for Deep Learning Classifiers.
IEEE Trans Neural Netw Learn Syst. 2025 Mar;36(3):4765-4778. doi: 10.1109/TNNLS.2024.3360641. Epub 2025 Feb 28.

引用本文的文献

1
Precision Medicine.
Annu Rev Stat Appl. 2019 Mar;6:263-286. doi: 10.1146/annurev-statistics-030718-105251.

本文引用的文献

1
Gene function prediction by a combined analysis of gene expression data and protein-protein interaction data.
J Bioinform Comput Biol. 2005 Dec;3(6):1371-89. doi: 10.1142/s0219720005001612.
2
The connection between regularization operators and support vector kernels.
Neural Netw. 1998 Jun;11(4):637-649. doi: 10.1016/s0893-6080(98)00032-x.
3
Transitive functional annotation by shortest-path analysis of gene expression data.
Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12783-8. doi: 10.1073/pnas.192159399. Epub 2002 Aug 26.
4
Functional discovery via a compendium of expression profiles.
Cell. 2000 Jul 7;102(1):109-26. doi: 10.1016/s0092-8674(00)00015-5.
5
New support vector algorithms.
Neural Comput. 2000 May;12(5):1207-45. doi: 10.1162/089976600300015565.
6
Using the Fisher kernel method to detect remote protein homologies.
Proc Int Conf Intell Syst Mol Biol. 1999:149-58.
7
Cluster analysis and display of genome-wide expression patterns.
Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8. doi: 10.1073/pnas.95.25.14863.
8
MIPS: a database for protein sequences, homology data and yeast genome information.
Nucleic Acids Res. 1997 Jan 1;25(1):28-30. doi: 10.1093/nar/25.1.28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验