Suppr超能文献

基于晚期融合的具有层次感知的对比学习在皮肤病变分类中的应用。

Hierarchy-aware contrastive learning with late fusion for skin lesion classification.

机构信息

Institute of Computer Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.

Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.

出版信息

Comput Methods Programs Biomed. 2022 Apr;216:106666. doi: 10.1016/j.cmpb.2022.106666. Epub 2022 Jan 26.

Abstract

BACKGROUND AND OBJECTIVE

The incidence rate of skin cancers is increasing worldwide annually. Using machine learning and deep learning for skin lesion classification is one of the essential research topics. In this study, we formulate a major-type misclassification problem that previous studies did not consider in the multi-class skin lesion classification. Moreover, addressing the major-type misclassification problem is significant for real-world computer-aided diagnosis.

METHODS

This study presents a novel method, namely Hierarchy-Aware Contrastive Learning with Late Fusion (HAC-LF), to improve the overall performance of multi-class skin classification. In HAC-LF, we design a new loss function, Hierarchy-Aware Contrastive Loss (HAC Loss), to reduce the impact of the major-type misclassification problem. The late fusion method is applied to balance the major-type and multi-class classification performance.

RESULTS

We conduct a series of experiments with the ISIC 2019 Challenges dataset, which consists of three skin lesion datasets, to verify the performance of our methods. The results show that our proposed method surpasses the representative deep learning methods for skin lesion classification in all evaluation metrics used in this study. HAC-LF achieves 0.871, 0.842, 0.889 for accuracy, sensitivity, and specificity in the major-type classification, respectively. With the imbalanced class distribution, HAC-LF outperforms the baseline model regarding the sensitivity of minority classes.

CONCLUSIONS

This research formulates a major-type misclassification problem. We propose HAC-LF to deal with it and boost the multi-class skin lesion classification performance. According to the results, the advantage of HAC-LF is that the proposed HAC Loss can beneficially reduce the impact of the major-type misclassification by decreasing the major-type error rate. Besides the medical field HAC-LF is promising to be applied to other domains possessing the data with the hierarchical structure.

摘要

背景与目的

全球范围内皮肤癌的发病率每年都在增加。使用机器学习和深度学习进行皮肤病变分类是一个重要的研究课题。在这项研究中,我们提出了一个之前的研究没有考虑到的多类皮肤病变分类中的主要类型错误分类问题。此外,解决主要类型错误分类问题对于实际的计算机辅助诊断具有重要意义。

方法

本研究提出了一种新的方法,即层次感知对比学习与晚期融合(HAC-LF),以提高多类皮肤分类的整体性能。在 HAC-LF 中,我们设计了一个新的损失函数,即层次感知对比损失(HAC 损失),以减少主要类型错误分类问题的影响。采用晚期融合方法来平衡主要类型和多类分类性能。

结果

我们使用 ISIC 2019 挑战赛数据集进行了一系列实验,该数据集包含三个皮肤病变数据集,以验证我们方法的性能。结果表明,与用于皮肤病变分类的代表性深度学习方法相比,我们提出的方法在本研究中使用的所有评估指标上都表现出色。HAC-LF 在主要类型分类中分别实现了 0.871、0.842、0.889 的准确性、敏感性和特异性。在不平衡的类分布情况下,HAC-LF 在少数类的敏感性方面优于基线模型。

结论

本研究提出了一个主要类型错误分类问题。我们提出 HAC-LF 来处理它,并提高多类皮肤病变分类性能。根据结果,HAC-LF 的优势在于,所提出的 HAC 损失可以通过降低主要类型错误率,有利地减少主要类型错误分类的影响。除了医学领域,HAC-LF 有望应用于具有层次结构数据的其他领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验