Eli Lilly & Co., 10300 Campus Point Drive, San Diego, CA 92121, USA.
Protein Eng Des Sel. 2010 May;23(5):375-84. doi: 10.1093/protein/gzq004. Epub 2010 Feb 11.
Upon removal of the regulatory insert (RI), the first nucleotide binding domain (NBD1) of human cystic fibrosis transmembrane conductance regulator (CFTR) can be heterologously expressed and purified in a form that remains stable without solubilizing mutations, stabilizing agents or the regulatory extension (RE). This protein, NBD1 387-646(Delta405-436), crystallizes as a homodimer with a head-to-tail association equivalent to the active conformation observed for NBDs from symmetric ATP transporters. The 1.7-A resolution X-ray structure shows how ATP occupies the signature LSGGQ half-site in CFTR NBD1. The DeltaF508 version of this protein also crystallizes as a homodimer and differs from the wild-type structure only in the vicinity of the disease-causing F508 deletion. A slightly longer construct crystallizes as a monomer. Comparisons of the homodimer structure with this and previously published monomeric structures show that the main effect of ATP binding at the signature site is to order the residues immediately preceding the signature sequence, residues 542-547, in a conformation compatible with nucleotide binding. These residues likely interact with a transmembrane domain intracellular loop in the full-length CFTR channel. The experiments described here show that removing the RI from NBD1 converts it into a well-behaved protein amenable to biophysical studies yielding deeper insights into CFTR function.
去除调节插入序列(RI)后,人囊性纤维化跨膜电导调节因子(CFTR)的第一个核苷酸结合域(NBD1)可以以稳定的形式异源表达和纯化,而无需可溶性突变、稳定剂或调节延伸(RE)。这种蛋白质,NBD1 387-646(Delta405-436),以同源二聚体的形式结晶,头对头的缔合相当于对称 ATP 转运蛋白的 NBD 观察到的活性构象。1.7-A 分辨率的 X 射线结构显示了 ATP 如何占据 CFTR NBD1 中特征性的 LSGGQ 半位点。该蛋白的 DeltaF508 版本也以同源二聚体的形式结晶,与野生型结构仅在致病 F508 缺失的附近有所不同。一个稍长的构建体以单体的形式结晶。与该单体结构和之前发表的单体结构的同源二聚体结构比较表明,ATP 在特征性位点结合的主要影响是使特征序列前的残基 542-547 有序排列,形成与核苷酸结合相容的构象。这些残基可能与全长 CFTR 通道的跨膜域细胞内环相互作用。这里描述的实验表明,从 NBD1 中去除 RI 可将其转化为一种行为良好的蛋白质,可进行生物物理研究,从而更深入地了解 CFTR 的功能。