Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
School of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.
J Chem Inf Model. 2021 Apr 26;61(4):1762-1777. doi: 10.1021/acs.jcim.0c01207. Epub 2021 Mar 15.
Cystic Fibrosis (CF) is caused by mutations to the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channel. CFTR is composed of two membrane spanning domains, two cytosolic nucleotide-binding domains (NBD1 and NBD2) and a largely unstructured R-domain. Multiple CF-causing mutations reside in the NBDs and some are known to compromise the stability of these domains. The ability to predict the effect of mutations on the stability of the cytosolic domains of CFTR and to shed light on the mechanisms by which they exert their effect is therefore important in CF research. With this in mind, we have predicted the effect on domain stability of 59 mutations in NBD1 and NBD2 using 15 different algorithms and evaluated their performances via comparison to experimental data using several metrics including the correct classification rate (CCR), and the squared Pearson correlation () and Spearman's correlation (ρ) calculated between the experimental Δ values and the computationally predicted ΔΔ values. Overall, the best results were obtained with FoldX and Rosetta. For NBD1 (35 mutations), FoldX provided and ρ values of 0.64 and -0.71, respectively, with an 86% correct classification rate (CCR). For NBD2 (24 mutations), FoldX , ρ, and CCR were 0.51, -0.73, and 75%, respectively. Application of the Rosetta high-resolution protocol (Rosetta_hrp) to NBD1 yielded , ρ, and CCR of 0.64, -0.75, and 69%, respectively, and for NBD2 yielded , ρ, and CCR of 0.29, -0.27, and 50%, respectively. The corresponding numbers for the Rosetta's low-resolution protocol (Rosetta_lrp) were = 0.47, ρ = -0.69, and CCR = 69% for NBD1 and = 0.27, ρ = -0.24, and CCR = 63% for NBD2. For NBD1, both algorithms suggest that destabilizing mutations suffer from destabilizing vdW clashes, whereas stabilizing mutations benefit from favorable H-bond interactions. Two triple consensus approaches based on FoldX, Rosetta_lpr, and Rosetta_hpr were attempted using either "majority-voting" or "all-voting". The all-voting consensus outperformed the individual predictors, albeit on a smaller data set. In summary, our results suggest that the effect of mutations on the stability of CFTR's NBDs could be largely predicted. Since NBDs are common to all ABC transporters, these results may find use in predicting the effect and mechanism of the action of multiple disease-causing mutations in other proteins.
囊性纤维化(CF)是由囊性纤维化跨膜电导调节因子(CFTR)氯离子通道的突变引起的。CFTR 由两个跨膜结构域、两个胞质核苷酸结合域(NBD1 和 NBD2)和一个主要无结构的 R 结构域组成。多个 CF 致病突变位于 NBDs 中,有些已知会破坏这些结构域的稳定性。因此,能够预测突变对 CFTR 胞质结构域稳定性的影响,并阐明其作用机制,对于 CF 研究非常重要。考虑到这一点,我们使用 15 种不同的算法预测了 NBD1 和 NBD2 中的 59 个突变对结构域稳定性的影响,并使用几种指标(包括正确分类率(CCR))对其性能进行了评估,包括计算实验 Δ 值和计算 ΔΔ 值之间的皮尔逊相关系数()和斯皮尔曼相关系数(ρ)。总体而言,FoldX 和 Rosetta 得到了最好的结果。对于 NBD1(35 个突变),FoldX 分别提供了 0.64 和 -0.71 的和 ρ 值,以及 86%的正确分类率(CCR)。对于 NBD2(24 个突变),FoldX 分别提供了 0.51、-0.73 和 75%的、ρ 和 CCR。应用 Rosetta 高分辨率方案(Rosetta_hrp)到 NBD1 得到了 0.64、-0.75 和 69%的和 ρ,以及 69%的 CCR,对于 NBD2,得到了 0.29、-0.27 和 50%的和 ρ,以及 50%的 CCR。Rosetta 的低分辨率方案(Rosetta_lrp)的相应数字分别为 = 0.47、ρ = -0.69 和 CCR = 69%用于 NBD1,和 = 0.27、ρ = -0.24 和 CCR = 63%用于 NBD2。对于 NBD1,两种算法都表明,使结构域不稳定的突变会受到不稳定的范德华冲突的影响,而稳定的突变则受益于有利的氢键相互作用。尝试了两种基于 FoldX、Rosetta_lpr 和 Rosetta_hpr 的三重共识方法,使用“多数投票”或“全票”。全票共识优于个别预测者,尽管是在较小的数据集上。总的来说,我们的结果表明,突变对 CFTR NBDs 稳定性的影响可以在很大程度上被预测。由于 NBDs 是所有 ABC 转运蛋白共有的,因此这些结果可能有助于预测其他蛋白质中多种致病突变的作用和作用机制。