Suppr超能文献

近期 CFTR 药物研发的战略进展:概述。

Recent Strategic Advances in CFTR Drug Discovery: An Overview.

机构信息

Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.

Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20090 Segrate (MI), Italy.

出版信息

Int J Mol Sci. 2020 Mar 31;21(7):2407. doi: 10.3390/ijms21072407.

Abstract

Cystic fibrosis transmembrane conductance regulator (CFTR)-rescuing drugs have already transformed cystic fibrosis (CF) from a fatal disease to a treatable chronic condition. However, new-generation drugs able to bind CFTR with higher specificity/affinity and to exert stronger therapeutic benefits and fewer side effects are still awaited. Computational methods and biosensors have become indispensable tools in the process of drug discovery for many important human pathologies. Instead, they have been used only piecemeal in CF so far, calling for their appropriate integration with well-tried CF biochemical and cell-based models to speed up the discovery of new CFTR-rescuing drugs. This review will give an overview of the available structures and computational models of CFTR and of the biosensors, biochemical and cell-based assays already used in CF-oriented studies. It will also give the reader some insights about how to integrate these tools as to improve the efficiency of the drug discovery process targeted to CFTR.

摘要

囊性纤维化跨膜电导调节因子 (CFTR)- 修复药物已经将囊性纤维化 (CF) 从一种致命疾病转变为一种可治疗的慢性疾病。然而,人们仍在等待能够以更高的特异性/亲和力结合 CFTR 并发挥更强治疗效果和更少副作用的新一代药物。计算方法和生物传感器已经成为许多重要人类病理疾病药物发现过程中不可或缺的工具。相反,迄今为止,它们在 CF 中的应用只是零散的,需要将它们与经过充分验证的 CF 生化和基于细胞的模型适当整合,以加快新 CFTR 修复药物的发现。这篇综述将概述 CFTR 的现有结构和计算模型,以及已经在 CF 研究中使用的生物传感器、生化和基于细胞的测定方法。它还将为读者提供一些关于如何整合这些工具以提高针对 CFTR 的药物发现过程效率的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7d0/7177952/012d795d8e75/ijms-21-02407-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验