Pecori Federico, Hanamatsu Hisatoshi, Furukawa Jun-Ichi, Nishihara Shoko
Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan.
Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
Methods Mol Biol. 2022;2490:179-193. doi: 10.1007/978-1-0716-2281-0_13.
Glycosylation is one of the most abundant posttranslational modifications and is involved in a wide range of cellular processes. Glycome diversity in mammals is generated by the action of over 200 distinct glycosyltransferases and related enzymes. Nevertheless, glycosylation dynamics are tightly coordinated to allow proper organismal development. Here, using mouse embryonic stem cells (mESCs) and mouse epiblast-like cells (mEpiLCs) as model systems, we describe a robust protocol that allows comprehensive and comparative structural analysis of the glycome.
糖基化是最丰富的翻译后修饰之一,参与广泛的细胞过程。哺乳动物中的糖组多样性是由200多种不同的糖基转移酶和相关酶的作用产生的。然而,糖基化动力学被紧密协调以确保生物体的正常发育。在这里,我们使用小鼠胚胎干细胞(mESCs)和小鼠类上胚层细胞(mEpiLCs)作为模型系统,描述了一种强大的方案,该方案允许对糖组进行全面和比较性的结构分析。