Suppr超能文献

轴突选择性光刺激揭示丘脑和新皮层之间的特定通路前馈回路。

Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons.

机构信息

Department of Neuroscience, Brown University, Providence, RI 02912, USA.

出版信息

Neuron. 2010 Jan 28;65(2):230-45. doi: 10.1016/j.neuron.2009.12.025.

Abstract

Thalamocortical and corticothalamic pathways mediate bidirectional communication between the thalamus and neocortex. These pathways are entwined, making their study challenging. Here we used lentiviruses to express channelrhodopsin-2 (ChR2), a light-sensitive cation channel, in either thalamocortical or corticothalamic projection cells. Infection occurred only locally, but efferent axons and their terminals expressed ChR2 strongly, allowing selective optical activation of each pathway. Laser stimulation of ChR2-expressing thalamocortical axons/terminals evoked robust synaptic responses in cortical excitatory cells and fast-spiking (FS) inhibitory interneurons, but only weak responses in somatostatin-containing interneurons. Strong FS cell activation led to feedforward inhibition in all cortical neuron types, including FS cells. Corticothalamic stimulation excited thalamic relay cells and inhibitory neurons of the thalamic reticular nucleus (TRN). TRN activation triggered inhibition in relay cells but not in TRN neurons. Thus, a major difference between thalamocortical and corticothalamic processing was the extent to which feedforward inhibitory neurons were themselves engaged by feedforward inhibition.

摘要

丘脑皮质和皮质丘脑通路介导丘脑和新皮层之间的双向通讯。这些通路交织在一起,使得它们的研究具有挑战性。在这里,我们使用慢病毒在丘脑皮质投射细胞或皮质丘脑投射细胞中表达光敏感阳离子通道通道型视蛋白 2(ChR2)。感染仅发生在局部,但传出轴突及其末端强烈表达 ChR2,允许对每条通路进行选择性光学激活。激光刺激表达 ChR2 的丘脑皮质轴突/末端在皮质兴奋性细胞和快速放电(FS)抑制性中间神经元中引起强烈的突触反应,但在含有生长抑素的中间神经元中仅引起微弱的反应。强烈的 FS 细胞激活导致所有皮质神经元类型的前馈抑制,包括 FS 细胞。皮质丘脑刺激兴奋丘脑中继细胞和丘脑网状核(TRN)的抑制性神经元。TRN 的激活触发中继细胞的抑制,但不触发 TRN 神经元的抑制。因此,丘脑皮质处理和皮质丘脑处理之间的一个主要区别是前馈抑制性神经元本身被前馈抑制所涉及的程度。

相似文献

3
Effects of Optogenetic Activation of Corticothalamic Terminals in the Motor Thalamus of Awake Monkeys.
J Neurosci. 2016 Mar 23;36(12):3519-30. doi: 10.1523/JNEUROSCI.4363-15.2016.
4
Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex.
J Neurosci. 2001 Apr 15;21(8):2699-710. doi: 10.1523/JNEUROSCI.21-08-02699.2001.
5
Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex.
Nat Neurosci. 2007 Apr;10(4):462-8. doi: 10.1038/nn1861. Epub 2007 Mar 4.
6
Fast-spike interneurons and feedforward inhibition in awake sensory neocortex.
Cereb Cortex. 2003 Jan;13(1):25-32. doi: 10.1093/cercor/13.1.25.
7
Robust but delayed thalamocortical activation of dendritic-targeting inhibitory interneurons.
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2187-92. doi: 10.1073/pnas.0710628105. Epub 2008 Feb 1.
8
Two dynamically distinct inhibitory networks in layer 4 of the neocortex.
J Neurophysiol. 2003 Nov;90(5):2987-3000. doi: 10.1152/jn.00283.2003. Epub 2003 Jun 18.
9
Short-term dynamics of thalamocortical and intracortical synapses onto layer 6 neurons in neocortex.
J Neurophysiol. 2002 Oct;88(4):1924-32. doi: 10.1152/jn.2002.88.4.1924.

引用本文的文献

2
Primary auditory thalamus relays directly to cortical layer 1 interneurons.
iScience. 2025 Jun 24;28(8):112652. doi: 10.1016/j.isci.2025.112652. eCollection 2025 Aug 15.
3
A scalable, all-optical method for mapping synaptic connectivity with cell-type specificity.
bioRxiv. 2025 Jun 25:2025.06.25.661552. doi: 10.1101/2025.06.25.661552.
8
Complementary Organization of Mouse Driver and Modulator Cortico-thalamo-cortical Circuits.
J Neurosci. 2025 Jan 29;45(5):e1167242024. doi: 10.1523/JNEUROSCI.1167-24.2024.
9
Cortical dynamics in hand/forelimb S1 and M1 evoked by brief photostimulation of the mouse's hand.
bioRxiv. 2025 Mar 13:2024.12.02.626335. doi: 10.1101/2024.12.02.626335.
10
Restoring transient connectivity during development improves dysfunctions in fragile X mice.
bioRxiv. 2024 Sep 9:2024.09.08.611918. doi: 10.1101/2024.09.08.611918.

本文引用的文献

1
Fast synaptic subcortical control of hippocampal circuits.
Science. 2009 Oct 16;326(5951):449-53. doi: 10.1126/science.1178307.
2
Stability of electrical coupling despite massive developmental changes of intrinsic neuronal physiology.
J Neurosci. 2009 Aug 5;29(31):9761-70. doi: 10.1523/JNEUROSCI.4568-08.2009.
3
Functional organization of the somatosensory cortical layer 6 feedback to the thalamus.
Cereb Cortex. 2010 Jan;20(1):13-24. doi: 10.1093/cercor/bhp077.
4
Driving fast-spiking cells induces gamma rhythm and controls sensory responses.
Nature. 2009 Jun 4;459(7247):663-7. doi: 10.1038/nature08002. Epub 2009 Apr 26.
5
Synchrony in the interconnected circuitry of the thalamus and cerebral cortex.
Ann N Y Acad Sci. 2009 Mar;1157:10-23. doi: 10.1111/j.1749-6632.2009.04534.x.
6
Septal neurons in barrel cortex derive their receptive field input from the lemniscal pathway.
J Neurosci. 2009 Apr 1;29(13):4089-95. doi: 10.1523/JNEUROSCI.5393-08.2009.
7
Optical deconstruction of parkinsonian neural circuitry.
Science. 2009 Apr 17;324(5925):354-9. doi: 10.1126/science.1167093. Epub 2009 Mar 19.
8
Characterization of engineered channelrhodopsin variants with improved properties and kinetics.
Biophys J. 2009 Mar 4;96(5):1803-14. doi: 10.1016/j.bpj.2008.11.034.
9
Maintaining network activity in submerged hippocampal slices: importance of oxygen supply.
Eur J Neurosci. 2009 Jan;29(2):319-27. doi: 10.1111/j.1460-9568.2008.06577.x.
10
The subcellular organization of neocortical excitatory connections.
Nature. 2009 Feb 26;457(7233):1142-5. doi: 10.1038/nature07709.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验