Department of Prosthodontics, School of Dentistry, Showa University, Tokyo, Japan.
Biomaterials. 2010 May;31(14):3827-39. doi: 10.1016/j.biomaterials.2010.01.133. Epub 2010 Feb 13.
Recently, UV photofunctionalization of titanium has been shown to be effective in enhancing osteogenic environment around this functional surface, in particular for the use of endosseous implants. However, the underlying mechanism remains unknown and its potential application to other tissue engineering materials has never been explored. We determined whether adhesion of a single osteoblast is enhanced on UV-treated nano-thin TiO(2) layer with virtually no surface roughness or topographical features. Rat bone marrow-derived osteoblasts were cultured on UV-treated or untreated 200-nm thick TiO(2) sputter-coated glass plates. After an incubation of 3 h, the mean critical shear force required to initiate detachment of a single osteoblast was determined to be 1280 +/- 430 nN on UV-treated TiO(2) surfaces, which was 2.5-fold greater than the force required on untreated TiO(2) surfaces. The total energy required to complete the detachment was 37.0 +/- 23.2 pJ on UV-treated surfaces, 3.5-fold greater than that required on untreated surfaces. Such substantial increases in single cell adhesion were also observed for osteoblasts cultured for 24 h. Osteoblasts on UV-treated TiO(2) surfaces were larger and characterized with increased levels of vinculin expression and focal contact formation. However, the density of vinculin or focal contact was not influenced by UV treatment. In contrast, both total expression and density of actin fibers increased on UV-treated surfaces. Thin layer TiO(2) coating and UV treatment of Co-Cr alloy and PTFE membrane synergistically resulted in a significant increase in the ability of cell attachment and osteoblastic production of alkaline phosphatase. These results indicated that the adhesive nature of a single osteoblast is substantially enhanced on UV-treated TiO(2) surfaces, providing the first evidence showing that each individual cell attached to these surfaces is substantially more resistant to exogenous load potentially from blood and fluid flow and mechanical force in the initial stage of in vivo biological environment. This enhanced osteoblast adhesion was supported synergistically but disproportionately by enhancement in focal adhesion and cytoskeletal developments. Also, this study demonstrated that UV treatment is effective on nano-thin TiO(2) depositioned onto non-Ti materials to enhance their bioactivity, providing a basis for TiO(2)-mediated photofunctionalization of biomaterials, a new method of developing functional biomaterials.
最近,已经证明紫外线光功能化钛能够有效地增强功能表面周围的成骨环境,特别是对于使用骨内植入物。然而,其潜在的应用于其他组织工程材料的潜在机制仍不清楚。我们确定了在具有几乎没有表面粗糙度或形貌特征的紫外线处理的纳米薄 TiO(2)层上,单个成骨细胞的粘附是否增强。将大鼠骨髓源性成骨细胞培养在紫外线处理或未处理的 200nm 厚 TiO(2)溅射涂覆的玻璃平板上。孵育 3 小时后,确定单个成骨细胞开始分离所需的平均临界剪切力为 1280 ± 430nN 在紫外线处理的 TiO(2)表面上,比在未处理的 TiO(2)表面上所需的力大 2.5 倍。完成分离所需的总能量在紫外线处理的表面上为 37.0 ± 23.2pJ,比在未处理的表面上所需的能量大 3.5 倍。在培养 24 小时后,也观察到单个细胞粘附的这种大幅度增加。在紫外线处理的 TiO(2)表面上的成骨细胞更大,并且以增加的 vinculin 表达和焦点接触形成的特征。然而,vinculin 或焦点接触的密度不受紫外线处理的影响。相比之下,紫外线处理后的表面上总肌动蛋白纤维的表达和密度均增加。Co-Cr 合金和 PTFE 膜的薄 TiO(2)涂层和紫外线处理协同作用,显著提高了细胞附着和碱性磷酸酶产生的成骨细胞的能力。这些结果表明,单个成骨细胞的粘附性质在紫外线处理的 TiO(2)表面上大大增强,这首次表明,附着在这些表面上的每个单个细胞对来自血液和流体流动以及机械力的外来负荷具有更高的抵抗力,在体内生物环境的初始阶段。这种增强的成骨细胞粘附通过焦点附着和细胞骨架发育的协同但不成比例的增强得到支持。此外,本研究表明,紫外线处理对沉积在非 Ti 材料上的纳米薄 TiO(2)有效,以增强其生物活性,为 TiO(2)介导的生物材料光功能化提供了基础,这是一种开发功能性生物材料的新方法。