Suppr超能文献

通过X射线和中子衍射联合使用确定流体双层结构。II. “成分空间”精修方法。

Fluid bilayer structure determination by the combined use of x-ray and neutron diffraction. II. "Composition-space" refinement method.

作者信息

Wiener M C, White S H

机构信息

Department of Physiology and Biophysics, University of California, Irvine 92717.

出版信息

Biophys J. 1991 Jan;59(1):174-85. doi: 10.1016/S0006-3495(91)82209-3.

Abstract

This is the second of two papers describing a method for the joint refinement of the structure of fluid bilayers using x-ray and neutron diffraction data. We showed in the first paper (Wiener, M. C., and S. H. White. 1990. Biophys. J. 59:162-173) that fluid bilayers generally consist of a nearly perfect lattice of thermally disordered unit cells and that the canonical resolution d/hmax is a measure of the widths of quasimolecular components represented by simple Gaussian functions. The thermal disorder makes possible a "composition space" representation in which the quasimolecular Gaussian distributions describe the number or probability of occupancy per unit length across the width of the bilayer of each component. This representation permits the joint refinement of neutron and x-ray lamellar diffraction data by means of a single quasimolecular structure that is fit simultaneously to both diffraction data sets. Scaling of each component by the appropriate neutron or x-ray scattering length maps the composition space profile to the appropriate scattering length space for comparison to experimental data. Other extensive properties, such as mass, can also be obtained by an appropriate scaling of the refined composition space structure. Based upon simple bilayer models involving crystal and liquid crystal structural information, we estimate that a fluid bilayer with hmax observed diffraction orders will be accurately represented by a structure with approximately hmax quasimolecular components. Strategies for assignment of quasimolecular components are demonstrated through detailed parsing of a phospholipid molecule based upon the one-dimensional projection of the crystal structure of dimyristoylphosphatidylcholine. Finally, we discuss in detail the number of experimental variables required for the composition space joint refinement. We find fluid bilayer structures to be marginally determined by the experimental data. The analysis of errors, which takes on particular importance under these circumstances, is also discussed.

摘要

本文是描述利用X射线和中子衍射数据联合精修流体双层膜结构方法的两篇论文中的第二篇。我们在第一篇论文(Wiener, M. C., 和S. H. White. 1990. Biophys. J. 59:162 - 173)中表明,流体双层膜通常由热无序晶胞的近乎完美晶格组成,并且标准分辨率d/hmax是由简单高斯函数表示的准分子组分宽度的一种度量。热无序使得一种“组成空间”表示成为可能,其中准分子高斯分布描述了双层膜宽度上各组分每单位长度的占据数或概率。这种表示允许通过单个准分子结构对中子和X射线层状衍射数据进行联合精修,该结构可同时拟合两个衍射数据集。通过适当的中子或X射线散射长度对每个组分进行缩放,可将组成空间轮廓映射到适当的散射长度空间,以便与实验数据进行比较。其他广泛的性质,如质量,也可通过对精修后的组成空间结构进行适当缩放来获得。基于涉及晶体和液晶结构信息的简单双层膜模型,我们估计,具有hmax个观测衍射级次的流体双层膜将由具有大约hmax个准分子组分的结构准确表示。通过基于二肉豆蔻酰磷脂酰胆碱晶体结构的一维投影对磷脂分子进行详细剖析,展示了准分子组分的分配策略。最后,我们详细讨论了组成空间联合精修所需的实验变量数量。我们发现流体双层膜结构由实验数据勉强确定。在这种情况下特别重要的误差分析也进行了讨论。

相似文献

7
Phospholipid component volumes: determination and application to bilayer structure calculations.
Biophys J. 1998 Aug;75(2):734-44. doi: 10.1016/S0006-3495(98)77563-0.
8
Model-based approaches for the determination of lipid bilayer structure from small-angle neutron and X-ray scattering data.
Eur Biophys J. 2012 Oct;41(10):875-90. doi: 10.1007/s00249-012-0817-5. Epub 2012 May 16.

引用本文的文献

1
Small-angle scattering from flat bilayers containing correlated scattering length density inhomogeneities.
J Appl Crystallogr. 2023 Aug 16;56(Pt 5):1348-1360. doi: 10.1107/S1600576723006143. eCollection 2023 Oct 1.
2
Small-Angle Neutron Scattering for Studying Lipid Bilayer Membranes.
Biomolecules. 2022 Oct 29;12(11):1591. doi: 10.3390/biom12111591.
3
Cholesterol Stiffening of Lipid Membranes.
J Membr Biol. 2022 Oct;255(4-5):385-405. doi: 10.1007/s00232-022-00263-9. Epub 2022 Oct 11.
4
Structure and Interdigitation of Chain-Asymmetric Phosphatidylcholines and Milk Sphingomyelin in the Fluid Phase.
Symmetry (Basel). 2021 Aug;13(8). doi: 10.3390/sym13081441. Epub 2021 Aug 5.
5
Vesicle Viewer: Online visualization and analysis of small-angle scattering from lipid vesicles.
Biophys J. 2021 Nov 2;120(21):4639-4648. doi: 10.1016/j.bpj.2021.09.018. Epub 2021 Sep 24.
7
Biomembrane Structure and Material Properties Studied With Neutron Scattering.
Front Chem. 2021 Apr 27;9:642851. doi: 10.3389/fchem.2021.642851. eCollection 2021.
8
Characterization of the Features of Water Inside the SecY Translocon.
J Membr Biol. 2021 Apr;254(2):133-139. doi: 10.1007/s00232-021-00178-x. Epub 2021 Apr 3.
9
Charge Effects Provide Ångström-Level Control of Lipid Bilayer Morphology on Titanium Dioxide Surfaces.
Langmuir. 2021 Apr 6;37(13):3970-3981. doi: 10.1021/acs.langmuir.1c00214. Epub 2021 Mar 24.
10
How We Came to Understand the "Tumultuous Chemical Heterogeneity" of the Lipid Bilayer Membrane.
J Membr Biol. 2020 Jun;253(3):185-190. doi: 10.1007/s00232-020-00126-1. Epub 2020 Jun 3.

本文引用的文献

1
Comparative X-Ray and Neutron Diffraction Study of Bonding Effects in s-Triazine.
Science. 1967 Dec 22;158(3808):1577-9. doi: 10.1126/science.158.3808.1577.
2
The Direct Methods of X-ray Crystallography.
Science. 1986 Jul 11;233(4760):178-83. doi: 10.1126/science.233.4760.178.
3
Conformation of phosphatidylethanolamine in the gel phase as seen by neutron diffraction.
Biochemistry. 1980 Dec 23;19(26):6170-5. doi: 10.1021/bi00567a034.
4
Biochemical profiles of membranes from x-ray and neutron diffraction.
Biophys J. 1982 Feb;37(2):417-26. doi: 10.1016/S0006-3495(82)84687-0.
5
A statistical mechanical model of the lipid bilayer above its phase transition.
Biochim Biophys Acta. 1980 Jan 25;595(2):161-83. doi: 10.1016/0005-2736(80)90081-4.
10
Hexane dissolved in dioleoyllecithin bilayers has a partial molar volume of approximately zero.
Biochemistry. 1985 Aug 13;24(17):4637-45. doi: 10.1021/bi00338a024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验