Suppr超能文献

基于合成致死网络的基因功能预测:按需排序方法

Gene function prediction from synthetic lethality networks via ranking on demand.

机构信息

Machine Learning & Computational Biology Research Group, Max Planck Institutes, Tübingen, Germany.

出版信息

Bioinformatics. 2010 Apr 1;26(7):912-8. doi: 10.1093/bioinformatics/btq053. Epub 2010 Feb 12.

Abstract

MOTIVATION

Synthetic lethal interactions represent pairs of genes whose individual mutations are not lethal, while the double mutation of both genes does incur lethality. Several studies have shown a correlation between functional similarity of genes and their distances in networks based on synthetic lethal interactions. However, there is a lack of algorithms for predicting gene function from synthetic lethality interaction networks.

RESULTS

In this article, we present a novel technique called kernelROD for gene function prediction from synthetic lethal interaction networks based on kernel machines. We apply our novel algorithm to Gene Ontology functional annotation prediction in yeast. Our experiments show that our method leads to improved gene function prediction compared with state-of-the-art competitors and that combining genetic and congruence networks leads to a further improvement in prediction accuracy.

摘要

动机

合成致死相互作用代表一对基因,其单个突变不会导致致死,而两个基因的双突变则会导致致死。已有多项研究表明,基于合成致死相互作用的网络中基因的功能相似性与其距离之间存在相关性。然而,目前缺乏从合成致死相互作用网络预测基因功能的算法。

结果

在本文中,我们提出了一种新的技术,称为 kernelROD,用于基于核机器从合成致死相互作用网络中预测基因功能。我们将我们的新算法应用于酵母的基因本体功能注释预测。我们的实验表明,与最先进的竞争对手相比,我们的方法可以提高基因功能预测的准确性,并且结合遗传和一致性网络可以进一步提高预测的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验