The HIV Resistance Response Database Initiative, London, UK.
J Antimicrob Chemother. 2010 Apr;65(4):605-7. doi: 10.1093/jac/dkq032. Epub 2010 Feb 12.
In the absence of widespread access to individualized laboratory monitoring, which forms an integral part of HIV patient management in resource-rich settings, the roll-out of highly active antiretroviral therapy (HAART) in resource-limited settings has adopted a public health approach based on standard HAART protocols and clinical/immunological definitions of therapy failure. The cost-effectiveness of HIV-1 viral load monitoring at the individual level in such settings has been debated, and questions remain over the long-term and population-level impact of managing HAART without it. Computational models that accurately predict virological response to HAART using baseline data including CD4 count, viral load and genotypic resistance profile, as developed by the Resistance Database Initiative, have significant potential as an aid to treatment selection and optimization. Recently developed models have shown good predictive performance without the need for genotypic data, with viral load emerging as by far the most important variable. This finding provides further, indirect support for the use of viral load monitoring for the long-term optimization of HAART in resource-limited settings.
在缺乏广泛获得个体化实验室监测的情况下,这是资源丰富环境中 HIV 患者管理的一个组成部分,在资源有限的环境中推出高效抗逆转录病毒治疗 (HAART) 采用了基于标准 HAART 方案和治疗失败的临床/免疫学定义的公共卫生方法。在这种情况下,个体水平上 HIV-1 病毒载量监测的成本效益一直存在争议,并且在没有病毒载量监测的情况下管理 HAART 的长期和人群水平影响仍存在疑问。耐药数据库倡议开发的使用包括 CD4 计数、病毒载量和基因型耐药谱在内的基线数据准确预测 HAART 病毒学反应的计算模型,作为治疗选择和优化的辅助手段具有重要的潜力。最近开发的模型显示出良好的预测性能,而无需基因型数据,病毒载量显然是最重要的变量。这一发现为在资源有限的环境中使用病毒载量监测来长期优化 HAART 提供了进一步的间接支持。