Suppr超能文献

一种评估作物残茬试验数据(零天减损)的新工具。

A new tool for the evaluation of crop residue trial data (day-zero-plus decline).

机构信息

Australian Quarantine and Inspection Service, Canberra City, ACT 2601, Australia.

出版信息

Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2010 Mar;27(3):347-64. doi: 10.1080/19440040903403024.

Abstract

An approach is presented for the prediction of pesticide residue concentrations in food and feed commodities produced from foliar-treated crops. It uses limited residue trial data and relies on information on spray retention and decline rates of residues following application. The use of the simple approach is demonstrated for residues of a variety of pesticides and the results compared with data sets evaluated by the Joint FAO/WHO Meeting on Pesticide Residues (JMPR) using expert judgement and also with estimates of high residues obtained using statistical methods. It is proposed that the approach should constitute an additional tool for the risk assessment of pesticide residues; it contributes to the estimation of maximum residue limits (MRLs) and high and median residues, which are needed for risk assessment. The approach should be particularly useful in situations where only a few residue trials are available such as often occurs for minor crops.

摘要

本研究提出了一种预测叶施作物生产的食品和饲料中农药残留浓度的方法。该方法利用有限的残留试验数据,并依赖于施药后残留的保留和降解率信息。本方法的应用以各种农药的残留为例进行了说明,并将结果与粮农组织/世界卫生组织农药残留联席会议(JMPR)使用专家判断评估的数据组以及使用统计方法获得的高残留估计值进行了比较。本研究提出,该方法应该成为农药残留风险评估的另一种工具;它有助于估计最大残留限量(MRL)以及高残留和中值残留,这些是风险评估所必需的。该方法在只有少数残留试验的情况下特别有用,例如在小作物中经常出现的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验