Suppr超能文献

近红外拉曼光谱在胃腺癌早期诊断和分型中的应用。

Near-infrared Raman spectroscopy for early diagnosis and typing of adenocarcinoma in the stomach.

机构信息

Optical Bioimaging Laboratory, Department of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore.

出版信息

Br J Surg. 2010 Apr;97(4):550-7. doi: 10.1002/bjs.6913.

Abstract

BACKGROUND

The aim of this study was to evaluate the feasibility of using near-infrared (NIR) Raman spectroscopy for early diagnosis and typing of intestinal and diffuse adenocarcinoma of the stomach.

METHODS

A dispersive-type NIR Raman system was used for tissue measurements. One hundred gastric tissue samples from 62 patients who underwent endoscopy or gastrectomy were used (70 normal tissue specimens and 30 adenocarcinomas). Principal components analysis (PCA) and multinomial logistic regression (MNLR) were used to develop diagnostic algorithms for tissue classification.

RESULTS

High-quality Raman spectra ranging from 800 to 1800 cm(-1) were acquired from gastric tissue within 5 s. There were significant differences in Raman spectra between normal stomach and the two gastric adenocarcinoma subtypes, particularly in the spectral ranges 850-1150, 1200-1500 and 1600-1750 cm(-1), which contain signals related to proteins, nucleic acids and lipids. PCA-MNLR achieved predictive accuracies of 88, 92 and 94 per cent for normal stomach, and intestinal- and diffuse-type gastric adenocarcinomas respectively.

CONCLUSION

NIR Raman spectroscopy can detect gastric malignancy and identify the subtype of gastric adenocarcinoma.

摘要

背景

本研究旨在评估近红外(NIR)拉曼光谱技术用于早期诊断和肠型及弥漫型胃腺癌分型的可行性。

方法

采用色散型 NIR 拉曼系统进行组织测量。共对 62 例接受内镜或胃切除术的患者(70 例正常组织标本和 30 例腺癌)的 100 个胃组织样本进行了研究。采用主成分分析(PCA)和多项逻辑回归(MNLR)建立组织分类诊断算法。

结果

在 5 秒内即可从胃组织中获得高质量的 800 至 1800cm-1 范围内的拉曼光谱。正常胃组织与两种胃腺癌亚型的拉曼光谱存在显著差异,特别是在包含与蛋白质、核酸和脂质相关信号的 850-1150、1200-1500 和 1600-1750cm-1 光谱范围内。PCA-MNLR 对正常胃、肠型和弥漫型胃腺癌的预测准确率分别为 88%、92%和 94%。

结论

NIR 拉曼光谱可检测胃恶性肿瘤,并能识别胃腺癌的亚型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验