Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Postfach 3640, 76021 Karlsruhe, Germany.
Philos Trans A Math Phys Eng Sci. 2010 Mar 28;368(1915):1245-63. doi: 10.1098/rsta.2009.0268.
This work focuses on finding and rationalizing the building principles of clusters with approximately 300 atoms of different types of metals: main group elements (Al, Sn), alkaline earth metals (Mg), transition metals (Pd) and clusters consisting of two different elements (Ir and Pt). Two tools are inevitable for this purpose: (i) quantum chemical methods that are able to treat a given cluster with both sufficient accuracy and efficiency and (ii) algorithms that are able to systematically scan the (3n-6)-dimensional potential surface of an n-atomic cluster for promising isomers. Currently, the only quantum chemical method that can be applied to metal clusters is density functional theory (DFT). Other methods either do not account for the multi-reference character of metal clusters or are too expensive and thus can be applied only to clusters of very few atoms, which usually is not sufficient for studying the building principles. The accuracy of DFT is not known a priori, but extrapolations to bulk values from calculated series of data show satisfying agreement with experimental data. For scans of the potential surface, simulated annealing techniques or genetic algorithms were used for the smaller clusters (approx. 20-30 atoms), and for the larger clusters considerations were restricted to selected packings and shapes. For the mixed-metallic clusters, perturbation theory turned out to be efficient and successful for finding the most promising distributions of the two atom types at the different sites.
这项工作专注于寻找和合理化具有大约 300 个不同类型金属原子的团簇的构建原则:主族元素(Al、Sn)、碱土金属(Mg)、过渡金属(Pd)和由两种不同元素组成的团簇(Ir 和 Pt)。为此,有两个工具是必不可少的:(i)量子化学方法,能够以足够的精度和效率处理给定的团簇;(ii)算法,能够系统地扫描 n 原子团簇的(3n-6)维势能表面,以寻找有前途的异构体。目前,唯一可应用于金属团簇的量子化学方法是密度泛函理论(DFT)。其他方法要么不能考虑金属团簇的多参考特征,要么过于昂贵,因此只能应用于非常少原子的团簇,这通常不足以研究构建原则。DFT 的准确性是未知的,但从计算数据系列中推断出的体值表明与实验数据有令人满意的一致性。对于势能表面的扫描,模拟退火技术或遗传算法被用于较小的团簇(约 20-30 个原子),而对于较大的团簇,只考虑了选定的堆积和形状。对于混合金属团簇,微扰理论被证明是有效的,可以成功地找到两种原子类型在不同位置的最有前途的分布。