Suppr超能文献

人工神经网络识别危险因素对遗忘型轻度认知障碍转化的预测价值。

Artificial neural networks identify the predictive values of risk factors on the conversion of amnestic mild cognitive impairment.

机构信息

Department of Internal Medicine and Medical Specialties, University of Genova, Genova, Italy.

出版信息

J Alzheimers Dis. 2010;19(3):1035-40. doi: 10.3233/JAD-2010-1300.

Abstract

The search for markers that are able to predict the conversion of amnestic mild cognitive impairment (aMCI) to Alzheimer's disease (AD) is crucial for early mechanistic therapies. Using artificial neural networks (ANNs), 22 variables that are known risk factors of AD were analyzed in 80 patients with aMCI, for a period spanning at least 2 years. The cases were chosen from 195 aMCI subjects recruited by four Italian Alzheimer's disease units. The parameters of glucose metabolism disorder, female gender, and apolipoprotein E epsilon3/epsilon4 genotype were found to be the biological variables with high relevance for predicting the conversion of aMCI. The scores of attention and short term memory tests also were predictors. Surprisingly, the plasma concentration of amyloid-beta (42) had a low predictive value. The results support the utility of ANN analysis as a new tool in the interpretation of data from heterogeneous and distinct sources.

摘要

寻找能够预测遗忘型轻度认知障碍(aMCI)向阿尔茨海默病(AD)转化的标志物对于早期的机制治疗至关重要。使用人工神经网络(ANNs),对 80 名 aMCI 患者的 22 个已知 AD 风险因素进行了至少 2 年的分析。这些病例是从四家意大利阿尔茨海默病单位招募的 195 名 aMCI 患者中选择的。葡萄糖代谢紊乱、女性性别和载脂蛋白 E epsilon3/epsilon4 基因型是与预测 aMCI 转化高度相关的生物学变量。注意力和短期记忆测试的分数也是预测因素。令人惊讶的是,β淀粉样蛋白(42)的血浆浓度预测价值较低。这些结果支持了 ANN 分析作为一种新工具在解释来自不同和不同来源的数据的效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验