UO Medicina Nucleare, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
TECHNOLOGIC Srl, Lungo Dora Voghera, Torino, Italy.
PLoS One. 2021 Feb 8;16(2):e0245967. doi: 10.1371/journal.pone.0245967. eCollection 2021.
Osteoporosis is an asymptomatic disease of high prevalence and incidence, leading to bone fractures burdened by high mortality and disability, mainly when several subsequent fractures occur. A fragility fracture predictive model, Artificial Intelligence-based, to identify dual X-ray absorptiometry (DXA) variables able to characterise those patients who are prone to further fractures called Bone Strain Index, was evaluated in this study.
In a prospective, longitudinal, multicentric study 172 female outpatients with at least one vertebral fracture at the first observation were enrolled. They performed a spine X-ray to calculate spine deformity index (SDI) and a lumbar and femoral DXA scan to assess bone mineral density (BMD) and bone strain index (BSI) at baseline and after a follow-up period of 3 years in average. At the end of the follow-up, 93 women developed a further vertebral fracture. The further vertebral fracture was considered as one unit increase of SDI. We assessed the predictive capacity of supervised Artificial Neural Networks (ANNs) to distinguish women who developed a further fracture from those without it, and to detect those variables providing the maximal amount of relevant information to discriminate the two groups. ANNs choose appropriate input data automatically (TWIST-system, Training With Input Selection and Testing). Moreover, we built a semantic connectivity map usingthe Auto Contractive Map to provide further insights about the convoluted connections between the osteoporotic variables under consideration and the two scenarios (further fracture vs no further fracture).
TWIST system selected 5 out of 13 available variables: age, menopause age, BMI, FTot BMC, FTot BSI. With training testing procedure, ANNs reached predictive accuracy of 79.36%, with a sensitivity of 75% and a specificity of 83.72%. The semantic connectivity map highlighted the role of BSI in predicting the risk of a further fracture.
Artificial Intelligence is a useful method to analyse a complex system like that regarding osteoporosis, able to identify patients prone to a further fragility fracture. BSI appears to be a useful DXA index in identifying those patients who are at risk of further vertebral fractures.
骨质疏松症是一种高发病率和高患病率的无症状疾病,主要是在发生多次后续骨折后,导致骨折患者死亡率和残疾率较高。本研究评估了一种基于人工智能的脆性骨折预测模型,以确定能够描述那些容易发生进一步骨折的双能 X 线吸收法(DXA)变量,该模型称为骨应变指数。
在一项前瞻性、纵向、多中心研究中,纳入了 172 名首次观察时有至少一处椎体骨折的女性门诊患者。他们进行了脊柱 X 线检查以计算脊柱畸形指数(SDI),并进行了腰椎和股骨 DXA 扫描以评估基线时的骨矿物质密度(BMD)和骨应变指数(BSI),并在平均 3 年的随访后进行评估。随访结束时,93 名女性发生了进一步的椎体骨折。进一步的椎体骨折被认为是 SDI 增加一个单位。我们评估了监督人工神经网络(ANNs)的预测能力,以区分发生进一步骨折的女性和未发生进一步骨折的女性,并检测提供最大信息量以区分两组的变量。ANNs 自动选择合适的输入数据(TWIST 系统,带输入选择和测试的训练)。此外,我们使用自动收缩图构建了语义连接图,以提供关于所考虑的骨质疏松变量与两种情况(进一步骨折与无进一步骨折)之间复杂连接的进一步见解。
TWIST 系统从 13 个可用变量中选择了 5 个:年龄、绝经年龄、BMI、FTot BMC、FTot BSI。通过训练测试程序,ANNs 达到了 79.36%的预测准确率,敏感性为 75%,特异性为 83.72%。语义连接图突出了 BSI 在预测进一步骨折风险中的作用。
人工智能是分析骨质疏松等复杂系统的有用方法,能够识别容易发生脆性骨折的患者。BSI 似乎是一种有用的 DXA 指数,可用于识别那些有发生进一步椎体骨折风险的患者。