Belyaeva Julia, Elgeti Matthias
Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany.
Institute for Medical Physics and Biophysics, Leipzig University Medical School, Leipzig, Germany.
Elife. 2024 Sep 16;13:e99770. doi: 10.7554/eLife.99770.
Under physiological conditions, proteins continuously undergo structural fluctuations on different timescales. Some conformations are only sparsely populated, but still play a key role in protein function. Thus, meaningful structure-function frameworks must include structural ensembles rather than only the most populated protein conformations. To detail protein plasticity, modern structural biology combines complementary experimental and computational approaches. In this review, we survey available computational approaches that integrate sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling techniques to derive all-atom structural models of rare protein conformations. We also propose strategies to increase the reliability and improve efficiency using deep learning approaches, thus advancing the field of integrative structural biology.
在生理条件下,蛋白质在不同时间尺度上持续经历结构波动。一些构象仅以稀疏状态存在,但仍在蛋白质功能中起关键作用。因此,有意义的结构-功能框架必须包括结构集合,而不仅仅是最常见的蛋白质构象。为了详细了解蛋白质可塑性,现代结构生物学结合了互补的实验和计算方法。在本综述中,我们概述了可用的计算方法,这些方法将来自电子顺磁共振光谱的稀疏实验数据与分子建模技术相结合,以推导稀有蛋白质构象的全原子结构模型。我们还提出了使用深度学习方法提高可靠性和效率的策略,从而推动综合结构生物学领域的发展。